4
Generalization/Specialization as a Basis
for Software Specification

Alexander Borgida, John Mylopoulos
and Harry K.T. Wong

University of Toronto

ABSTRACT This paper describes a software specification methodol-
0gy based on the notion of concept specialization. The methodology,
which is particularly useful for Information Systems, applies uniformly to
the various components of such systems, such as data classes, transac-
tions, exceptions, and user interfaces (scripts), and its goal is the sys-
tematic and structured description of highly detailed world models, where
concepts occur in many variations. An example from the domain of
university information systems is used to illustrate and motivate the
approach.

1. Introduction

Complaints about the high cost of software development and mainte-
nance are now commonplace. Research in Programming Languages,
Software Engineering, and Database Management attempts to deal with
this problem by proposing tools and techniques for managing the ever
increasing complexity of software. Many of these techniques are based
on abstraction mechanisms that advocate the development of software in
a stepwise fashion, each step involving only some of the details of the

Alexander Borgida’s current address: Dept. of Computer Science, Rutgers University,
New Brunswick, NJ 08903.

Harry K.T. Wong’s current address: Lawrence Berkeley Labs, Berkeley, CA 94720.

88 On Conceptual Modeling

whole problem while others, hopefully the less relevant ones, are
suppressed until some later step.

For example, some current methodologies advocate the creation of a
sequence of models ranging from the initial “‘real-world problem to the
final machine-executable program. This abstraction, called Representa-
tion in [SS79], involves implementation details and is supported by a
number of languages and methodologies (e.g., [PARN72] and [WLS76],
among others). A second abstraction that has been advocated involves
grouping a collection of units into a new conceptual unit (4ggregation).
Software development through stepwise refinement [WIRT71] is based
on this abstraction and offers decomposition as a methodological tool
for building complex systems. This chapter focuses on conceptual mod-
elling, i.e., the specification of models that are closer to the human’s
conception of reality than to the machine’s representation, and pro-
poses a stepwise methodology based on concept specialization. In this
case, the abstraction involves factoring out the commonalities in the
description of several concepts into the description of a more general
concept, and the refinement process reintroduces these details by speci-
fying the ways in which a more specialized concept differs from the
more general one. This methodology, which we call taxonomic specifica-
tion, is complementary to stepwise refinement and methodologies based
on Representation, and we feel that it is particularly appropriate when
there are a large number of relatively simple, but interrelated, facts to
be captured.

Section 2 elaborates on the notions of ‘“model” and ‘‘abstraction,”
and Section 3 discusses Generalization as an abstraction mechanism and
compares our version to others that have been proposed in the litera-
ture. In Section 4 we present a long example using a language along
the lines of TAXIS? [MBW80] [WONGS81] to illustrate the nature and the
virtues of taxonomic specification. Section 5 sketches scripts that facili-
tate the description of the user dialogues that need to be supported by
the system under design, and Section 6 discusses exceptions and an
exception-handling mechanism that can be used as a tool in cases of
over-abstraction. Finally, Section 7 presents conclusions and directions
for further research.

1 The term ‘‘abstraction” is used here in a more general sense than usual in the field of
Programming Languages, where its meaning is usually that of “‘representation abstrac-
tion,” as that notion is defined below.

2 TAXIS is a programming language for the design of interactive information systems,

such as on-line inventory control and airline reservations, which supports taxonomic
programming and offers many of the features discussed in the rest of the chapter.

Generalization/Specialization 89

2. Models and Abstractions

The observation that a computer system constitutes a model of a
“world” or “‘slice of reality” about which it contains information has
been made repeatedly in the literature (e.g., [ABRI74] [BC75] [WILS75]),
and is most obvious in the case of information systems. This observa-
tion motivates our first axiom: in a substantial number of cases, the
process of software specification can be viewed as the process of build-
ing an accurate model of some enterprise. In order to facilitate the task
of the modeler, as well as communication with the eventual users, we
also assume that these models should reflect naturally and directly the
users’ conceptualization of the universe of discourse.

Unfortunately, the term ‘model” has several different technical
meanings and it seems appropriate to contrast them with the sense used
in this chapter.

The term receives its most precise and technical sense in the field of
mathematical logic where, given a set of axioms and their deductive
consequences, one interprets them in terms of a “model” (i.e., a set of
mathematical entities and relations which satisfy the axioms). This
notion underlies in one way or another all other uses of the term, but
in this technical sense its use is restricted to the theory of mathematical
logic.

Two other uses of the term, namely as an analogue device (e.g., a
wind-tunnel model of an airplane) and as a mathematical model (e.g.,
Maxwell’s equations as a model of electricity) are common in science
and engineering, but they are quite distinct from the term as used in
this chapter.

From the cognitive sciences we obtain the notion of “‘conceptual
model,” which is much closer to what we want. Such a model consists
of a number of symbol structures and symbol structure manipulators
which, according to a rather naive mentalistic philosophy, are supposed
to correspond to the conceptualizations of the world by human obser-
vers. This view appears to underlie work on ‘“‘semantic data models”
(e.g., survey in [BORGS82b]) and ‘knowledge representation” (e.g.,
overviews in [BD81] and [MYLOS81]).

Another sense of the term ‘“model” is current in the area of Data
Base Management Systems under the guise of ‘“‘data model.” A data
model (see [TL82] for example) specifies the rules according to which
data are structured and what associated operations are permitted on
them. The traditional data models underlying commercial Database
Management Systems consider as data only strings and numbers, and
they are concerned primarily with the manner in which data is accessed
by the user (in some cases reflecting how data is stored in the com-
puter), and have little or no regard for the interpretation process
required to make information out of data.

90 On Conceptual Modeling

Since our concern here is with human oriented models of a world, we
adopt the “‘conceptual model” sense of the term rather than one of the
others.

If one accepts the need for conceptual models he is immediately
faced with the problem of identifying the constructs that facilitate their
creation. Not surprisingly, many of the proposed constructs have their
roots in epistemological methods for organizing knowledge.

Abstraction is a fundamental conceptual tool used for organizing
information. The following are just a few aspects of abstraction that are
useful in describing complex conceptual models:

® Classification. Grouping entities that share common characteristics
into a class over which uniform conditions hold. The class PERSON,
for example, can be derived from the entities john smith, mary
brown, efc., through classification. The inverse of Classification,
Instantiation, can be used to obtain other entities that conform to the
constraints associated with the definition of the class person.

® Aggregation. Treating a collection of concepts as a single concept.
For example, person could be thought of, rather naively, as an
aggregation of its name, address, and profession. Decompo-
sition 1s the opposite of Aggregation since it decomposes a class into
its constituent parts.

® Generalization. Extracting from one or more given classes the
description of a more general class that captures the commonalities
but suppresses some of the detailed differences in the descriptions of
the given classes. Employee, for instance, is a generalization of
the classes secretary, trucker, and accountant. The
process that has the opposite effect to Generalization (i.e., creates a
new class by introducing additional detail to the description of an
existing one) is called Specialization.

There are other abstraction mechanisms, such as ‘“normalization”
(suppression of details that deal with deviations from the norm and
emphasis of details that deal only with the normal or ordinary circum-
stances [BORG82a]) but the three above have received the most atten-
tion. Conceptual models of complex worlds are bound to be large if
they are to account for sufficiently many properties of their subjects.
The abstraction mechanisms discussed above offer both organizational
principles and design methodologies for conceptual models.

Not surprisingly, each of these mechanisms, as well as the representa-
tion abstraction noted in the introduction, has led to proposals for soft-
ware development methodologies. For example, Representation has led
to abstract data type-related methodologies and important programming
languages such as Simula [DH72], CLU [LSAS77], Alphard [WLS76], etc.
(See the chapter by Shaw.) These have been defined to support the

Generalization/Specialization 91

development of software through the gradual introduction of imple-
mentation detail. Similarly, aggregation has led to proposals for the
design of software through stepwise refinement (by decomposition)
(e.g., [WIRT71] [DIJK72]), and languages such as Pascal have been
found suitable for supporting this abstraction. Object-oriented program-
ming is based on classification and is supported by Simula and some of
its successors, notably Smalltalk [INGA78] and Actors [HBS73]. Finally,
generalization leads to methodologies that organize the collection of
classes constituting a model into hierarchies (taxonomies). Simula
(again!) and in a different context [SS77] follow this route.

Of course, a successful software development methodology has to
employ as many of the above mentioned abstraction mechanisms as
possible. For the purposes of research strategy, however, it seems fruit-
ful to focus on one mechanism and to formalize it, examine its applica-
bility, and study its usefulness; hence, this chapter concentrates on the
notion of Generalization/Specialization.

3. Generalization/Specialization

We are interested in formulating a methodology for building concep-
tual models based on Generalization/Specialization. The key idea of
such a methodology is that a model can be constructed by modelling
first, in terms of classes, the most general concepts and tasks in the
application area, and then proceeding to deal with sub-cases through
more specialized classes. Models constructed through such a process
have their classes structured into a taxonomy or so-called IS-A hierarchy.
For example, when building a student enrollment system for a univer-
sity, one might consider first the concepts of student and course and
the task of enrolling a student for a course. Later, the designer can
consider graduate and undergraduate students and courses, full- and
part-time students, day and evening courses, and the rules and regula-
tions that apply to these classes. Indeed, we believe that most situa-
tions of application programming, such as ones for student enrollment,
inventory control, airline or hotel reservations, inherently involve large
amounts of simple detail, and that taxonomies offer a fundamental tool
for coping with such situations.

Taxonomies of classes have been used in one form or another in arti-
ficial intelligence, programming languages and databases for over a
decade (e.g., [QUIL68] [DH72]). However, each author formulates them
differently. The rest of this section outlines the main points of view
and contrasts them to the one adopted in the chapter.

92 On Conceptual Modeling

One of the advantages of organizing descriptions into taxonomies is
the notion of inheritance. Since instances of a subclass are generally
also instances of its superclasses, there is no need to repeat the
information specified in the description of a class for each of its sub-
classes, and their own subclasses, efc. As a result, taxonomic descrip-
tions can be abbreviated, and some clerical errors can be avoided by
reducing the amount of repetition in descriptions.

There are two basic ways to view the description one associates with a
class such as PERSON (intended to model the concept of person). The
first is that the description simply characterizes a prototypical instance
of the concept, i.e., a prototypical person. It follows from this view that
some of the assertions of the description (e.g., that a person has a tele-
phone number) might be contradicted by a particular instance of the
class (e.g., bill brown who doesn’t have a telephone number
because he doesn’t have a telephone). Much of the Knowledge Repre-
sentation research within Artificial Intelligence views classes
(concepts/frames/units/ ...) in those terms. The second view treats
the description associated with a class as asserting necessary conditions
that must be satisfied by all of its instances. Simula and the semantic
data models adopt this view. The consequences of this choice on the
nature of taxonomies (IS-A hierarchies) are immediate.

1. Class as prototype. If class C IS-A class B (i.e., C is a specialization of
B and therefore lower down on the hierarchy) and B has some prop-
erties, these properties can be over-ridden in the definition of C.
Thus even though ‘‘All birds fly” and ‘Penguins are birds,”
penguins do not necessarily fly (in fact they don’t!). Inheriting prop-
erties from a more general class is done by default here (default
inheritance), i.e., only if the description of the more specialized class
does not assert otherwise. The assertions associated with a class
have an ‘“‘unless-otherwise-told” or default nature.

2. Class as template. 1If C IS-A B and B has some properties, then nec-
essarily C must have the same properties. Asserting that every bird
flies implies, with this view, that penguins can’t be birds since they
don’t fly. Thus inheritance of properties from a class to its
specializations is now strict (strict inheritance).

We adopt the second view of what a class is, and, as we will see in
Sections 5 and 6, treat exceptions through a separate exception-
handling mechanism rather than by weakening the assertional force of a
class definition.

There is still another choice to consider once one has made this deci-
sion. Neither Simula, nor the semantic data models that have been
proposed, with the exception of TAXIS, allow a property to be
“refined” as one specializes a class. For instance, if we have asserted

Generalization/Specialization 93

that every person has an age between 0 and 120 (years) in the descrip-
tion of the class PERSON, we would like to refine this property to
‘“every student has an age between 12 and 80 when PERSON is special-
ized to obtain STUDENT. With strict inheritance a new class inherits
all the properties of its generalizations and it can also have new proper-
ties of its own. However, it cannot refine any of the properties of its
generalizations along the lines suggested above.

We consider that an important modelling tool is the ability to refine
properties of a class as one generates its specializations.

We would like to emphasize even at this stage that the utility of gen-
eralization hierarchies for software engineering is not limited to the use
of inheritance, although this feature is often the most visible. In partic-
ular, the construction of the hierarchies systematizes and structures the
process of informationfrequirements gathering, and since the hierarchies
persist even after the system is designed, they provide an organization
of the information that facilitates the location of information and the esti-
mation of the effect of changes (e.g., changes to a class description will
affect all subclasses of that class) during program maintenance. Fur-
thermore, the development of procedures through stepwise refinement
by specialization down the IS-A hierarchy permits an incremental testing
of such programs, in contrast to programs developed through stepwise
refinement by decomposition [WIRT71], where only the final stage of
the refinement is an executable program. In this chapter, we shall con-
centrate on the use of Generalization hierarchies in the description of
Information Systems; we describe elsewhere the application of these
ideas to requirements specification [GBM82] and verification [WONG81]
[BORG81], among others.

4. Taxonomic Specification

As argued earlier, we view our task as having to describe the concep-
tual data objects and activities that occur in the domain of discourse,
and their associated constraints. Throughout this section our ideas will
be illustrated with examples from the student enrollment process at the
University of Toronto. In order not to distract from the methodological
aspects of this chapter, we have chosen to present the examples in a
semiformal way, preferring a skeletal language augmented with English
descriptions of programming language code; the interested reader is
referred to [WONGS81] and [MBWS80] for details of a programming lan-
guage into which these descriptions can be immediately translated. Bet-
ter known languages such as Simula [DH72] and Smalltalk [INGA78],
and recent systems such as Pie [BG80a], also support versions of the
abstractions involved in our methodology.

94 On Conceptual Modeling

Aggregation is supported by the notion of property—a function
which, when evaluated for an entity, returns one of its components or,
more vaguely, a related entity. For example, if “cs100” was some par-
ticular course, then title(*‘cs100”), limit(“cs100”), size(‘‘cs100”) and
class-list(*‘cs100”’) might represent respectively the title of this course,
‘Introduction to Programming,” the maximum and current enrollment
in the course, say 800 and 647 respectively, and the list of students cur-
rently enrolled in “cs100.” In the case of aggregation as applied to an
activity, some properties would have as value those activities that would
result from one step of decomposition as suggested by stepwise refine-
ment. Other properties of an activity would indicate the participants in
the activity, as well as possibly other “meta-information” such as its
beginning time, deadline for completion, etc. For example, if “e” is
the activity of enrolling the student ‘bilbo” into the course “cs100,”
then we might have student(“e€”) = “bilbo,” course(‘e”) = “cs100”
as the participants, and one of the component activities, say p2(‘e”),
would add student(*‘e”) to the class-list of course(‘‘e”).

Clearly, describing a model in terms of such specific “factual”
information is hardly satisfactory for the purposes of software specifica-
tion. In fact, the information required is of a “‘generic” nature, and
this imposes limitations on the facts that the computer system might
record. These are known as semantic constraints [HM75].

Classification provides one important means for introducing such
generic information by allowing us to present both the properties
applicable to all of the instances of a class and the constraints that
restrict the possible values of these properties. For example, the defi-
nition of the class COURSE might include as properties title, limit, size,
class-list, instructor, etc. Constraints on these would include at the very
least an indication of the range classes of these functions, as well as
possibly more complex limitations. For example, size might have 0 to
2000 as range, as well as the additional constraint that the size of the
course must be no greater than its /imit (constraint course-limit of
COURSE). This kind of information is obviously closely related to the
notions of type declaration in Programming Languages and to schema
definition in Databases. The diagram in Figure 4.1 describes two
classes of objects, STUDENT and COURSE, which will play a central role
in our enrollment system.

Whereas classification of objects yields data class definitions, classifi-
cation of activities yields transaction class definitions, similar to proce-
dure declarations in Programming Languages. The participants in the
activity play the role of formal parameters in procedure declarations;
the constraints on the values of these properties include type
information and initial, final, and invariant conditions, which act as
‘well-formedness’ constraints on the transaction invocation and execu-
tion. As suggested above, other properties indicate the subactions

Generalization/Specialization 95

comprising the definition of the procedure. Figure 4.2 is a schematic
description of the ENROL transaction class in our proposed student
record system.

data class STUDENT with
attributes
name: PERSON_NAME;
age: 12..80;
home-address: ADDRESS;
univ-address: ADDRESS;
faculty: {Arts&Science, GradSchool, Medicine};
status: {Full-time, Part-time}
courses-taken: set of COURSE;
taking-courses: set of COURSE;
end STUDENT;

data class COURSE with
attributes
title: STRING;
dept: DEPARTMENT;
limit: 0..2000;
size: 0..2000;
enrollment: set of STUDENT;
level: {1st-year,...,4th-year,intro-grad,adv-grad};
instructor: PROFESSOR;
invariants
course limit: (size < limit);
end COURSE;

Figure 4.1 Definition of STUDENT and COURSE Classes

transaction ENROL with
parameters
s: STUDENT;
c: COURSE;
prerequisites
Not-full?: (c.size<c.limit);
actions
a;: add ¢ to the list taking-courses of s;
as: add s to the enrollment-1list of c¢;
a,: increment size of ¢ by 1;
end ENROL;

Figure 4.2. The ENROL Transaction Definition

Since defining the appropriate classes is an important aspect of our
methodology we offer two heuristics for designers.

1. In general, properties, regarded as functions, are undefined every-
where except over the instances of the class they have been associ-
ated with, and usually every new class definition introduces several
new properties; hence a new class ought to be introduced whenever

96 On Conceptual Modeling

we desire a property whose domain of definition is not an already
existing class.

2. Secondly, almost all semantic constraints are stated through quantifi-
cation over the instances of classes (e.g., all instances of STUDENT
must have as age an instance of INTEGER in the range 12 to 80).

Additional expressive machinery occasionally may be needed but we
feel that these heuristics are adequate for a large number of modelling
situations.

Our methodology so far has only systematized and slightly extended
normal practices in software specification. As stated above, we are par-
ticularly interested in extending this methodology to deal with situa-
tions where there are a multitude of minute details relating to many
classes that share common characteristics. Specialization allows us to
describe each subclass of a more general class by specifying only the
additional details necessary for its definition, through the notion of
inheritance described in Section 3. As discussed there, in specializing a
class we can 1) “‘strengthen” any of the constraints stated for the par-
ent class (i.e., replace a constraint of the parent class, say A, with a
stronger one B such that B implies A); 2) provide additional con-
straints; and/or 3) introduce new properties and related constraints.
Figure 4.3 is a description of the subclass GRAD STUDENT of STU-
DENT.

data class GRAD_STUDENT is a STUDENT with
attributes
faculty: {GradSchool};
dept: DEPARTMENT;
advisor :PROFESSOR;
level: {MSc, PhD};
end GRAD_STUDENT;

Figure 4.3 A Specialized Subclass of STUDENT

Note that the faculty property of STUDENT was (consistently) refined
in GRAD_STUDENT so that it admits only one value, GradSchool.
Also, three new properties, dept, advisor, and level were introduced;
these only apply to graduate students while all other properties of STU-
DENT are of course inherited by GRAD_STUDENT. It may be worth
contrasting our notion of inheritance with that used in Simula or
Smalltalk. Simula allows only complete textual inheritance in the sense
that in describing subclasses one cannot alter the code described for the
superclass, but must inherit it completely (strict inheritance). Smalltalk
on the other hand uses default inheritance. Our description of Special-
ization above requires that the refined version of a constraint must not
contradict the original one; this ensures that all instances of subclasses

Generalization/Specialization 97

are also legal instances of all the classes higher up in the hierarchy.
Finally, it appears that neither Simula nor Smalltalk allows multiple
inheritance (i.e., inheritance from several distinct classes), a feature
that we shall find quite useful in describing transactions.

In the case of transactions, the specialization of parameters proceeds
in the same way as that of properties for data classes. As far as compo-
nent properties are concerned, one can either specialize the transaction
class of which a property must be an instance, or provide additional
properties. The example in Figure 4.4 illustrates the specialization of
the transaction class ENROL whose instances have graduate students as
the student s participant.

specialize ENROL (s : GRAD_STUDENT, c¢ : COURSE)
add
pPrerequisite
Advanced? (c.level 2 4th-year);
action
a,t inform School of Graduate Studies
about the enrollment;
end;

Figure 4.4 Specializing the ENROL Transaction

Here an additional prerequisite is added to ENROL for graduate stu-
dents to ensure that they are not allowed to take courses that are below
Fourth Year. There is also an extra action that will be carried out only
during the enrollment of graduate students. We will henceforth use
ENROL (s : Cl, ¢ : C2) to denote the subclass of ENROL whose
instances have the student s in C1 and the course ¢ in C2.

In order to provide a more convincing demonstration of the utility of
specialization as a specification methodology, we present next a partial
list of conditions on the enrollment of students in Computer Science
courses. Many of these were actually required until recently at the Uni-
versity of Toronto, although some were not checked until the students
were told that they had not taken the appropriate program and would
have to take one or more additional courses! It would clearly be bene-
ficial if these conditions were incorporated into any computerized stu-
dent information system, and hence modelling these constraints
becomes an important goal. For ease of reference, we have labeled
each with a mnemonic name followed by a question mark, indicating
that each of these will be a constraint predicate. The list in Figure 4.5
is clearly haphazardly drawn up and it is exactly our point that such
restrictions should be gathered in a more systematic way by system
designers, and hence our software development methodology should
support such systematization. In this case, we have chosen to encode
most, although not all, of these constraints as prerequisites of the

98 On Conceptual Modeling

ENROL transaction. The understanding is that if any of these
prerequisites is false, an exceprion will be raised and execution of the
transaction will be suspended. (We leave unspecified for the moment
what action should be taken to handle such exceptions.) As the first
step in our description, we present in Figure 4.6 the prerequisites and
actions of ENROL that apply to all students and all courses. This is in
accord with our proposal that one ought to describe first the more gen-
eral classes, and hence the constraints which apply to most objects.

Not-taken-before? A student cannot take the same course more than

Permission?
Part-time-min. ?
At-least-4th-year?
Not-full?
Undergrad-min. ?
Undergrad-max. ?

Not-excluded?

Before-deadline ?

Offered?

Has-preparation?

Part-time-max.?
Areas-OK ?

Another-1st-year?

once.

An undergraduate student requires the permission of
the instructor before taking a graduate course.

Part-time students need not take any courses in any
particular year.

Graduate students cannot take first, second, or third
year courses.

A student cannot enroll in a course whose enrol]-
ment limit has been reached.

A full-time undergraduate must take at least §
courses each year.

A full-time undergraduate may not take more than 6
courses in one year.

There exist groups of mutually exclusive undergrad-
uate courses and an undergraduate may take at most
one course from such a group.

Undergraduates must register in courses by October
13th. -

A student cannot take a course that is not offered at
the time requested.

An undergraduate course may have prerequisites that
an undergraduate student must have taken in previ-
ous terms.

Part-time students may not take more than 3 courses
a year.

A graduate Computer Science student must have
taken courses in each of three major areas.

At most 6 First Year courses may be counted toward
the 22 required for a B.Sc. degree.

Generalization/Specialization 99

Specialist? Arts & Science students desiring a specialist’s degree
must have taken the appropriate selection of courses.

Has-coreqs? Certain undergraduate courses may require
undergraduates to take other courses at the same
time (e.g., in mathematics).

Probation-max.? An undergraduate student on probation may take no
more than 5 courses a year.

Grad-max? Graduate students should not take more than 6
half-courses a year.

Figure 4.5 Restrictions on Enrolling in Computer Science Courses

ENROL (s: STUDENT, c: COURSE);
prerequisites

Offered?;
Not-full?;
Not-taken-before?;
actions
a,: add ¢ to the list taking-courses of s;
ay: add s to the enrollment-list of c;
aj: increment size of ¢ by 1;
end ENROL;

Figure 4.6 Most General Definition of ENROL

In order to introduce further details about ENROL, we can first
describe two subclasses of STUDENT, namely GRAD STUDENT and
UNDERGRAD_STUDENT. Since one of the properties of ENROL is the
parameter s, supposedly an instance of STUDENT, we can describe two
subclasses of ENROL: one for which s is restricted to be an instance of
GRAD_STUDENT, another for which s is an instance of
UNDERGRAD_STUDENT. In each case, we can introduce further con-
straints that must be checked before enrolling a student in a course (see
Figure 4.7).

Similarly, we can distinguish subclass GRAD _COURSE and
UNDERGRAD COURSE of COURSE, and in the case of graduate
courses we have a number of additional actions to be done in ENROL,
as illustrated in Figure 4.8.

There are two important points to note here about the interpretation
of ENROL (“bilbo,” “cs100’), assuming “bilbo” is an instance
of UNDERGRAD_STUDENT and ‘“csl100” is an instance of GRAD
COURSE: by inheritance, this activity will have all the properties of
ENROL(s: STUDENT, c: COURSE), ENROL(s: UNDERGRAD _STUDENT,
¢:COURSE), and ENROL(s:STUDENT, ¢:GRAD COURSE), and by an

100 On Conceptual Modeling

obviously useful convention, all inherited prerequisites will be checked
before any of the inherited actions will be executed. In this example
multiple inheritance is obviously a useful tool for the designer of a
system.

specialize ENROL(s: UNDERGRAD_STUDENT, c: COURSE)
add
prereguisites
Before-deadline?;
Not-too-many: Undergrad-max?;
end;

specialize ENROL (s: GRAD_STUDENT, c: COURSE);
add
pPrerequisites
At-least-4th-year?;
Areas-0QK?;
Not-too-many: Grad-max?;
actions
Ay, inform School of Graduate Studies
about the enrollment;
end;

Figure 4.7 Some Specializations of ENROL

specialize ENROL (s: STUDENT, c: GRAD_COURSE) ;
add
actions
ag: issue to s a key to the library;
aq: give s an unlimited $ computer account;
end;

Figure 4.8 Another Specialization of ENROL

Resuming the task of introducing the constraints in Figure 4.5,
we can now consider specialization of ENROL where more than one
parameter is specialized. As a result, we add additional constraints
on ENROL(s: UNDERGRAD_STUDENT, ¢ UNDERGRAD_COURSE),
ENROL (s: UNDERGRAD_STUDENT, ¢:GRAD COURSE) and ENROL
(s: GRAD_STUDENT, c: UNDERGRAD_COURSE), as in Figure 4.9.

Finally, by creating additional subclasses PART_TIME STUDENT and
STUDENT ON_PROBATION of UNDERGRAD STUDENT, we specialize
the Not-too-many? prerequisite to Part-time-max? and Probation-max?
respectively.

Generalization/Specialization 101

specialize ENROL(s: UNDERGRAD_STUDENT, c: GRAD_COURSE);
add
prerequisites
Permission?;
end;

specialize ENROL(s: UNDERGRAD_STUDENT, c: UNDERGRAD _COURSE) ;
add
prerequisites
Has-preparation?;
Not-excluded?;
Another-1st-year?;
end;

specialize ENROL(s: GRAD_STUDENT, c: UNDERGRAD_COURSE) ;
add
prerequisites
At-least-4th-year?;
end ;

Figure 4.9 Further Specializations of ENROL

A number of remarks are in order at this point. First, note that
some restrictions, such as the minimum number of courses that a stu-
dent must take, cannot be checked until a student has enrolled in all
the courses he or she was going to take, and hence these restrictions
should not be placed in the ENROL transaction. Instead, one may have
a REGISTER transaction which requires as a parameter the list of
courses that the student intends to take in that year, and the above con-
ditions would then be prerequisites on this list of courses. Alterna-
tively, after a certain date has passed, a transaction could be run auto-
matically to check such constraints on the list of courses each student is
taking. Secondly, note that since we treat data and transactions in a
uniform manner, there is no reason why the conditions in Figure 4.5
could not be considered as invariant assertions for the classes of objects
STUDENT and COURSE. In particular, they could be grouped around
the class-list property of COURSE and properties ftaking-courses and
courses-taken of STUDENT, and they could be introduced in a manner
similar to the one used by describing the appropriate subclasses of STU-
DENT and COURSE. In this case however, violations of the constraints
would be detected when the ENROL procedure attempts to insert a new
element in the taking-courses list of a student, rather than at the time
ENROL is originally invoked.

102 On Conceptual Modeling

5. Scripts

As we have remarked in the previous section, not all conditions in
Figure 4.5 can be accounted for as prerequisites of the ENROL transac-
tion (for example: checking for co-requisites or for conditions involving
a minimum number of courses where one needs to know what other
courses the student is or will be enrolling in this year). Furthermore, a
central attribute of many systems is the ability to communicate interac-
tively with its users in order to obtain the data which “drives” the
transactions. We must therefore be able to specify the communication
protocols that make up the user interfaces.

For the above purposes we propose scripts (generalized processes that
have elaborate communication and synchronization mechanisms for the
system designer). The script formalism used is an adaptation of
Zisman’s Augmented Petri Nets [ZISM78] proposed for office automa-
tion systems and it is described in more detail in [BARR80]. Each script
is essentially a Petri net that has parameters, local variables, and state
transitions. In turn, each transition consists of conditions that must be
true in order for the transition to fire, and actions that are to be carried
out if the transition does fire. In order to enable communication,
scripts can employ operators for message passing between a script and a
terminal, or, more generally, between any two scripts. These operators
are based on Hoare’s primitives give and take [HOAR78], and they pro-
vide further ability for synchronization, especially when the clock is
allowed to send “‘wake up” messages at desired times. Although much
more elaborate communication mechanisms are being currently devel-
oped, we will consider here a message as simply a form that has text and
slots that can be filled by the user (or some other script) and then sent
off. (See [TSIC82] for a detailed discussion of the utility of forms as
communication means in an office environment.)

To illustrate the use of scripts let us place enrolling into courses into a
wider context. At our university, students register first with the univer-
sity. This includes paying fees, selecting a program of studies that is
“correct,” etc. However, students take courses directly from the
departments offering them, thus allowing the departments to have
direct contact with students in order, for example, to sell them required
lecture notes, lab materials, efc. Consider therefore the TAKE COURSE
script which describes the protocol for taking a course (see Figure 5.1).

The script is parameterized by the department d, which is supposedly
offering the course, and it includes five states represented by circles
and five state transitions represented by vertical bars. Each transition
has associated conditions and actions, and these are separated by => on
the diagrams. An instance of the TAKE_COURSE script is created by
the secretary of the appropriate department whenever a student enrolls
in a course. The initial transition on the script requests a description of

Generalization/Specialization 103

the student s and the course ¢, which are properties of the script. Once
this information has been received, the script proceeds with the process
of enrolling the student for the course, and this includes expecting a
grade from the instructor of the course. At the same time, the script is
set up to expect and act on a ‘““drop the course” request at any time
while the student is taking the course. Following normal procedures for
enrolling, once the student and the course are identified the script
invokes the ENROL transaction and then awaits the message indicating
the grade that the student has received in the course. We remark that
this script ““lives” until the final state is reached, which may be several
months later, and that every student would have several such scripts,
one for each course he is taking, thus requiring sophisticated use of the
database for maintaining all this information.

parameters

d : department;
locals

s : student;

¢ : course;

Deadline passed? =»>
Remind c.instructor;

true =>
Ask user to true =>
identify s and Cs Call ENROL(S,C);

Gnitm stat9 y @ —

Grade received? =>
Record grade; .
Send message

to registrar;

Received "drop course"
message? =>
if already enrolled,
undo enrollment;

4 } {::-final stat;i:)

Figure 5.1 Diagram of the TAKE_COURSE Script

Scripts, like all other constructs, are treated as classes in our method-
ology. Thus their bodies (i.e., their states and transitions), and also all
other information associated with their definition is specified through
properties that link a script to other classes. (Figure 5.2 shows the defi-
nition of the TAKE _COURSE script.)

104 On Conceptual Modeling

script class TAKE_COURSE(d)
parameters
d: DEPARTMENT ;
locals
S: STUDENT;
c: COURSE;
grade: {0..100};

states
initial: initial_state;
final: final_state;

others: state_2, state_3, state_4;

transitions
obtain information:
from initial state;
to state_2, state_4;
conditions none
actions get s and c¢ from user;
enrollment:
from state_2;
to state_3;
conditions none ;
actions call ENROL(s,c);
late-grade:
from state_3;
to state_3;
conditions deadline for grade for s,c passed?
actions send message to instructor of c
have-grade:
from state_3;
to state_4;
conditions sent a grade?
actions record grade and send message to
registrar;
drop course:
from state_4;
to final state;
conditions sent "drop course" message®?;
actions undo enrollment;
end TAKE_COURSE

Figure 5.2 Textual Description of TAKE_COURSE Script

It follows that transitions can be specialized in a manner similar to
transactions, and more generally one can add new states and transitions
in order to create a script that applies in more restricted circumstances
than a given script. For example, the Engineering departments may
require a mid-term mark to be recorded and mailed to each student;

Generalization/Specialization 105

this could be accomplished by specializing TAKE COURSE (d: DEPART-
MENT) to TAKE_COURSE (d: ENGINEERING DEPT) by adding the
script in Figure 5.3.

true => call ENROL(s,c);

Received mid-term grade? =>
Record mid-term grade;

Deadline for mid-term passed? =»>
Remind c.instructor;

Figure 5.3 Additions for TAKE_COURSE(d:ENGINEERING DEPT)

Before leaving this section we present a second example of a script
that models the sequence of events from the time an undergraduate
student registers for his nth (1< n<4) year of (university) study until
the time he completes it (Figure 5.4). The basic protocol described by
the script involves accepting information about the student, followed by
the courses he proposes to take, then waiting for the grades he/she is
assigned in these courses, and finally determining that the student has
completed the year satisfactorily. Secondary protocols are also defined
to take care of such contingencies as withdrawal from the program or
late arrival of grades.

To summarize, scripts are useful in enforcing dynamic integrity con-
straints on transaction call sequences (e.g., one can’t receive grades
until enrolled in a course), and in defining the format and the protocol
of interactions with users. They are a natural place for exception-
handling, including exceptions arising because of time delays, as will be
seen in the next section.

For simple examples, the introduction of scripts as modelling tools
may seem heavy-handed and perhaps unnecessary. There is evidence,
however, that designing the environment within which a system will
run, including its user interfaces, is one of the thorniest problems fac-
ing a system designer [CM79]. We consider this observation a sufficient
justification of the introduction and use of scripts within our modelling
framework.

106 On Conceptual Modeling

initial- stat€:>
\J7
waiting for V7
courses SRz
<,

have courses

waiting for
grades

have grades

waiting for waiting for ?/
withdrawal decision)

process withdrawal passed year

request
year of study
over

Figure 5.4 The YEAR OF STUDY Script

get student
information

“courses late

= failed courses

6. Exceptions

The ability to manage exceptions (i.e., deal with over-abstraction) is
characteristic of human behaviour and, we believe, of central impor-
tance in managing a multitude of details. Until recently this ability has
been noticeably absent from computer application software. In our
case, the traditional view dictates that a transaction such as ENROL
should be aborted, hopefully with at least an error message, if any of its
constraints (e.g., prerequisites or restrictions on parameters) were not
met. Alternatively, one might replace the prerequisites by successive
IF-THEN conditionals, specifying in each case the course of action to be
taken if the constraint were false. In addition to the limitation that this
imposes on handling exceptions (see [LEVI77]), it appears to run
counter to the “natural” flow of description: one has to constantly take
detours from describing how students usually enroll in courses in order
to say what is to be done in rare special cases. A more palatable alter-
native appears to be to adopt the convention that whenever a constraint
(such as a prerequisite) evaluates to false, an exception object is raised
(i.e., is inserted as an instance of a special class). One can then
describe in a separate pass the ways in which exceptions are to be

Generalization/Specialization 107

handled. Furthermore, exceptions and exception-handlers can be
described using the same methodology of concept specialization.

In order to simplify the discussion, we assume in our example that
whenever a prerequisite is not satisfied, an instance of the exception
labelled by the negation of the condition is raised (e.g., if Not-full? is
false then the exception Full is raised).

One possibility in specifying exceptions is to proceed methodically
down the specialization hierarchy of ENROLs and specify which excep-
tions are raised when different conditions are violated. Alternatively,
we may want to organize exceptions, including those raised by condi-
tions that could not be checked in ENROL, into a specialization hierar-
chy organized along different lines than that of ENROL.? Figure 6.1
illustrates a hierarchy of exception classes constructed by answering the
question “What can go wrong with enrolling in a course?” at various
levels of generality.

ENROL EXCEPTION

N

COURSE CHOICE _EXC TIME _VIOLATION COURSES_UNAVAILABLE

KNOWS TOO_MUCH AFTER_OCT.13 NOT_OFFERED FULL
<T CAN _HANDLE _WORK WRONG_COURSE_PLAN
EXCLUDED E\
TAKEN_BEFORE o PERMISSION %FO_COREQS
BELOW_ATH YEAR UNPREPARED YAREAS_NOT_OK
TOO_MANY_COURSES NOT_SPECIALIST

TOO_MANY_FIRST_YEAR
TOO_FEW_COURSES
TOO_MANY_FOR_UNDERGRAD

TOO_FEW_FOR_PART_TIME

Figure 6.1 Specialization Hierarchy for Exceptions

The topmost exception class on the hierarchy, ENROL_EXCEPTION is
intended simply to signal that an exception was raised during the execu-
tion of an ENROL transaction. Turning to its immediate subclasses,
COURSES_UNAVAILABLE indicates that the course cannot be accom-
modated at the university, so one must abort the ENROL that caused
the exception. Alternatively, the system may give the student

3 Clearly, in doing this type design, computer aids are imperative when one checks to
see whether all prerequisites have been accounted for.

108 On Conceptual Modeling

information about when the course will next be given, and it might put
the student on a waiting list before aborting. For TIMING
VIOLATIONS, students can petition to a special committee in order to
be allowed to register late. In an automated office environment this
might result in the ENROL being suspended while a PETITION is taking
place. As far as COURSE CHOICE EX is concerned, there is nothing
we can say that is applicable in all cases; one of the advantages of our
methodology over more traditional approaches such as decision tables is
that we do not have to say anything if we have no new information to
add. However, considering subclasses of COURSE CHOICE EX, we
note that instances of KNOW _TOO MUCH should always be handled by
“‘abort,” since students should not be allowed to pick up credits gratis,
while instances of CAN'T HANDLE WORK require petitioning again.
In neither case need we say anything more about the subclasses of
these two types of exceptions. Finally, the WRONG COURSE PLAN
exceptions require distinctive individual treatment. For NO_
COREQUISITE, the student must take the other course. For TOO FEW _
COURSES, he must take other courses, efc.

Turning to exception-handling, we assume that for each exception
raised within a transaction 7, the exception-handler, another transaction
or script, is specified by the caller of 7. The following specifications
illustrate the exception-handling mentioned in the first half of this sec-
tion.

To start with, we specify in TAKE_COURSE (d: DEPARTMENT), and,
in particular, in association with the call to the ENROL transaction, the
exception-handler to be used in case of an ENROL _EXCEPTION (Figure
6.2(a)). As indicated earlier, at this level exception-handling simply
consists of a message to the user naming the exception that has been
raised. Let’s call this most general exception-handler EX HANDLER (e:
ENROL_EXCEPTION), shown in Figure 6.2(b). EX HANDLER assumes
that its exception argument has two associated properties, std and crs,
through which one can determine the student and the course for which
the exception was raised.

Dealing with some of the more specialized exceptions involves the
adding of actions to be carried out by EX HANDLER. For example,
EX HANDLER (e: COURSE_UNAVAILABLE) may output, in addition to
the exception message, another message that specifies when the course
is given in the future, and then abort the attempted enrollment (see
Figure 6.3).

Other exceptions require additional states and transitions in
EX HANDLER. Thus TIMING_VIOLATION exceptions involve petition-
ing a committee and may eventually result in an enrollment (see Figure
6.4).

Generalization/Specialization 109

script class TAKE_COURSE(d: DEPARTMENT)

enrollment:

actions call ENROL(s,c)
for exception eCENROL_EXCEPTION with std*—s, crs+c
use EX_HANDLER(e)

Modified enrollment transition in TAKE_COURSE

(a)

script class EX_HANDLER(e)
parameters
e: ENROL_EXCEPTION;
states
initial: initial_state;
final: final_state;
others: none;
transitions
send message;
from initial state;
to final state;
conditions none
actions send Class_of(e).message
end EX_HANDLER;

Class_of(e) evaluates to the most specialized class e is an
instance of, say C, and C.message evaluates to a(n error)
message associated with that class as an attribute.

(b)

Figure 6.2 Raising and Handling Exceptions

specialize EX_HANDLER (e: COURSE_UNAVAILABLE) ;
transitions '
send message:
actions
inform user when the course is given next;
send "drop course" message to TAKE_COURSE
(std,crs);
end;

Figure 6.3 Specialization of an Exception-Handler

110 On Conceptual Modeling

specialize EX_HANDLER (e: TIMING_VIOLATION);

locals

reply: ({YES,NO};
states

others: awaiting_reply;
transitions

send message;
from initial_state;
to awaiting_reply;
conditions none;
actions
send type (e).message;
send petition (e.std, e.crs) to committee script;
positive reply;
from awaiting_reply;
to final_state;
conditions sent reply = YES?
actions
inform user;
call ENROL(e.std,e.crs);
negative reply;
from awaiting_reply;
to final_state;
conditions sent reply = NO?
actions
inform user;

send "drop course" message to TAKE_COURSE(std, crs):
end;

Figure 6.4 Another Specialization of EX HANDLER

send message

fin_state

init_state‘j:>

enrollment
have_reply

accept reply
(:;get_reply enroll in coreq

student wants to take coreqs?

(Egi_about_cor;gg>

Ask_about_coreqgs is also an initial state. Tran-
sition send message only fires if the reply has
been negative; otherwise, enrollment fires.

Figure 6.5 Exception Handler for Course Corequisites

Generalization/Specialization 111

Among COURSE CHOICE EX exceptions, only WRONG_COURSE _
PLAN requires special exception-handling facilities. For NO_COREQS
exceptions, for example, EX HANDLER must communicate with the
user to determine whether the student is willing to enroll in all these
courses. If he is, EX HANDLER carries out all such enrollments and
then proceeds with the enrollment originally requested. This specializa-
tion of EX HANDLER is shown graphically in Figure 6.5.

We conclude this section by noting that the ability to describe scripts,
exceptions, and exception-handlers within the same framework as pro-
vided for the normal data and transaction classes gives a pleasing
uniformity and conceptual parsimony to the proposed methodology.

7. Conclusions

We have outlined and illustrated the principal elements of a software
specification methodology that combines stepwise refinement by
decomposition with concept specialization in order to introduce the
multitude of details typically associated with large interactive systems.
To recapitulate, the methodology suggests that the designer should start
by defining the most general naturally occurring classes of objects and
events in the domain. This is to be accomplished by the use of named
properties that connect related concepts, and by the use of assertions
that restrict the potential relationships. Further details of the proposed
system are then introduced in successive iterations by describing sub-
classes of already presented classes and specializing transactions in
order to deal with the objects in these classes.® The result is a hierarchy
(taxonomy) of data, transaction, and script classes on which inheritance
operates to abbreviate natural redundancy without losing the benefit of
being able to check consistency. Once the usual/normal aspects of the
system are described to some level of detail, the designer can describe,
using the same methodology, the exceptions raised by the failure of
assertions and their handling mechanism.

In evaluating the methodology, we feel that it is conducive to a natu-
ral style of description because it is oriented toward the conceptual object
and activities occurring in the user’s world. Our heuristics for identify-
ing classes, and the suggestion of describing first general classes and
then more specialized subclasses, provide some needed guidance to the
designer. Similarly, the virtual specialization hierarchy that results

4 Of course, this does not prevent one from introducing at any stage new classes, trans-
actions, and scripts as they are needed.

112 On Conceptual Modeling

when considering the possible specializations of each parameter for a
transaction is a convenient conceptual rack on which to hang the details
of the problem domain. In addition to its role of abridging descrip-
tions, multiple inheritance, as illustrated in our example, allows one to
think separately about independent aspects of the world (e.g., under-
graduate students and graduate courses) with inheritance taking care of
their interaction. Finally, we feel that the systematic treatment of
exceptions and exception-handlers within the same framework of data,
transaction, and script classes supports another important abstraction
principle: the ability to disregard the exceptional or unusual situations
during the first pass in the design.

By developing program specifications according to the above method-
ology, one also gains some advantage in verifying the correctness of the
final system. For example, having verified that a ‘“‘general” transaction
(i.e., one high in the generalization hierarchy) maintains an invariant,
one can often (because of inheritance) reuse this proof in demonstrat-
ing that the various specializations of the transaction also maintain the
invariant (see [WONG81] [BORGS81]).

Two other chapters in this book, those by King and McLeod and Bro-
die and Ridjanovic, also address the problem of designing complete
database systems; hence a brief comparison of the three approaches is
in order.

To begin with, there are a number of striking similarities in the gen-
eral philosophy of the approaches taken, similarities due in no small
part to the principles expressed in the title of this book: ‘“‘conceptual
modelling.”” Thus all three chapters start the design process with a con-
ceptual model of the enterprise as seen by the system’s eventual users.
This model is meant to capture as much of the semantics of the real
world as possible, certainly more than in traditional database design; in
other words, all three chapters would be classified as work in
“semantic/conceptual data models.” Among others, this leads to an
emphasis on modelling entities and their semantic relationships rather
than on pure data organization. In a departure from most other seman-
tic data models, all three emphasize the importance of modelling the
dynamic/behavioural, not just the static parts of an enterprise, and the
need to integrate these two facets of the description. Furthermore, all
three chapters recognize the difficulties that arise in designing large,
complex systems, and hence they emphasize the importance of a meth-
odology of design that is inseparably linked to the modelling features
offered. As a natural extension to this concern, the three research
groups also offer a variety of computer tools that are meant to assist the
designer in achieving a complete and accurate design.

Among the notable general differences are the fact that TAXIS, at
least as presented here, focuses on design at one level only, while both
the others consider design at several levels of detail. Thus in ACM/

Generalization/Specialization 113

PCM (see the chapter by Brodie and Ridjanovic), there is a general
graphical schema, a more precise predicate-based technique for specifi-
cation, and finally a functional technique for full details, wherever
desired, while the “‘event model” of King and McLeod has an initial
design schema, which drives the building of a conceptual schema,
which in turn forms the basis of a physical design. On the other hand,
through the notions of scripts, messages, exceptions, and exception-
handlers, TAXIS probably addresses in detail a wider variety of aspects
of an information system, though we should point out that the event
model does model at least part of what scripts are intended to accom-
plish.

Although both this chapter and that of Brodie and Ridjanovic look for
uniformity in the way objects and activities are modeled, they come up
with different answers. ACM/PCM sees association of objects as paral-
leling iteration, and specialization of concepts corresponding to choice,
while TAXIS’s notion of iteration is not related to the abstraction princi-
ples, and specialization of transactions is quite similar in spirit to spe-
cialization of entities. A different attempt at uniformity shows up in
the chapter of King and McLeod, in their novel attempt at incorporat-
ing the modelling events themselves into the model, thus bringing pro-
gram maintenance into the same uniform framework.

Finally, the chapters can be distinguished by the basic metaphors
which in some sense ‘“‘drive” the design process. In the event model,
the design schema describes mostly events and their interactions, and
this drives the process of describing entities, efc. In contrast, the other
chapters use the structure of the data descriptions to ‘“‘drive’ the
description of the activities. In ACM/PCM, this is evident from the way
that the actions associated with an application object are determined by
its structure — the “‘context” (e.g., in the Hotel-reservation actions). In
TAXIS, on the other hand, the hierarchy of data classes “drives’’ the
specialization of transactions, while the hierarchy of exceptions drives
that of exception-handlers.

There are, of course, many other comparisons that could be drawn,
but space limits us to those which we feel are most significant.

To conclude, we reiterate our belief that taxonomic organization is an
essential human activity that allows us to cope with multitudes of detail.
Our goal is to propose linguistic and computer tools that would support
precisely such an organization during the development of a software
system. Evidence of such tools can be seen in [BMWS$2] and in
forthcoming MSc theses by B. Nixon and P. O’Brien. Since, in the end,
the only demonstration of the importance of an idea is its successful
practical use, our group has attempted to model in significant detail a
number of applications in the university and hospital environments,
with results presented in [WONG81] and in forthcoming theses by C.
Di Marco and I. Buchan. Finally, research is still in progress on the use

114 On Conceptual Modeling

of these ideas for general requirements specification and for designing
the language of interaction between users and a specific system.

The authors gratefully acknowledge the permission of North Holland
Publishing Company to reproduce portions of an earlier version of this
paper.

8. References

[ABRI74] [BD81] [BARRS80] [BG80al [BC75] [BORGS81] [BORGS2a]
[BORGS82b] [BWS81] [BMW82] [CM79] [DH72] [DIJK72] [GBMS82] [HM?75]
[HBS73] [HOAR78] I[INGA78] [LEVI77] [LSAS77] [MS81] [MYLOS1]
[MBW80] [PARN72] [QUIL68] [SS79] [TSIC82] [TL82] [WASS77] [WILS75]
[WIRT71] [WONG81] [WLS76] [ZISM78]

[ABRI74]
Abrial, J.R., “Data Semantics,” in J. W. Klimbie and K.L.
Koffeman (eds.), Daia Management Systems, North-Holland, Amster-
dam, The Netherlands, 1974,

[ACC82]
Atkinson, M., K. Chisholm, and P. Cockshott, “PS-ALGOL: An
ALGOL with a Persistent Heap,” SIGPLAN Notices, Vol. 17, No. 7
July 1982.

[AGBB77]
Ambler, A.L., D.I. Good, J.C. Browne, W.F. Burger, R. M. Cohen,
C.G. Hoch and R.E. Wells, “Gypsy: A Language for Specification
and Implementation of Verifiable Programs,” SIGPLAN Notices, Vol.
12, No. 3, March 1977, pp. 1-10.

IAGP78]
Arvind, (no initial), K. P. Gostelow, and W. Plouffe, “The (Prelimi-
nary) Id Report,”” Technical Report 114, Dept. of Information and
Computer Science, Univ. of California, Irvine, 1978.

[AI80]

Artificial Intelligence, Special Issue on Non-Monotonic Logic, D.
Bobrow (ed.), Vol. 13, Nos. 1 and 2, April 1980.

[AMS81]
Ariav, G., and H.L. Morgan, “MDM: Handling the Time Dimen-
sion in Generalized DBMSs,” Decision Sciences Working Paper 81-
05-06, Wharton School, Univ. of Pennsylvania, 1981.

[ANSI7S5]
ANSI/X3/SPARC (Standards Planning and Requirements Commit-
tee), “Interim Report from the Study Group on Database Manage-
ment Systems,” FDT (Bulletin of ACM SIGMOD), Vol. 7, No. 2,
1975.

[AS81]
Attardi, G. and M. Simi, “‘Semantics of Inheritance and Attributions
in the Description System Omega,” Proc. International Joint

Conference on Artificial Intelligence, Vancouver, B.C., Canada, August
1981.

3

462 On Conceptual Modeling

[AU79]
Aho, A.V., and J.D. Ullman, “Universality of Data Retrieval Lan-
guages,” Proc. 6th ACM Symposium on Principles of Programming Lan.-
guages, 1979.

[AV80]
Apt, K.R., and Van Emden, M. H., “Contributions to the Theory of
Logic Programming,” Research Report CS-80-12, Dept. of Com-
puter Science, Univ. of Waterloo, Waterloo, Ont., Canada, 1980.

[BACH77]
Bachman, C.W., “The Role Concept in Data Models,” Proc. 3rd

International Conference on Very Large Databases, Tokyo, Japan,
19717.

[BACK78]
Backus, J., “Can Programming be Liberated from the von Neumann
Style?,” Communications of the ACM, Vol. 21, No. 8 August 1978,
pp. 613-641.

[BALZ81]
Balzer, R., “Transformational Implementation: An Example,” JEEE
Transactions on Software Engineering, Vol. SE-7, No. 1, January 1981.

[BARBS82]
Barber, G.R., ““Office Semantics,” Ph.D. thesis, Massachusetts Insti-
tute of Technology, 1982.

[BARRS0]
Barron, J.L., Dialogue Organization and Structure for Interactive
Information Systems, Master’s thesis, (CSRG Technical Report)
Dept. of Computer Science, Univ. of Toronto, January 1980.

[BARS77]
Barstow, D.R., ‘““‘Automatic Construction of Algorithms and Data

Structures Using A Knowledge Base of Programming Rules,”
Stanford AIM-308, November 1977.

[BARWS1]
Barwise, J., “Some Computational Aspects of Situation Semantics
(Abstract),” Unpublished manuscript, 1981,

[BBC80]
Bernstein, P. A., B.T. Blaustein, and E.M. Clarke, “Fast Mainte-
nance of Integrity Assertions Using Redundant Aggregate Data,”

Proc. 6th International Conference on Very Large Databases, Montreal,
Que., Canada, October 1980.

[BBD77]
Bell, M. L., D.C. Bixler, and M. E. Dyer, “An Extendible Approach
to Computer-Aided Software Requirements Engineering,”” [EEFE
Transactions on Software Engineering, Vol. SE-3, No. 1, January 1977.

[BBDG81a]
Bauer, F.L., M. Broy, W. Dosch, R. Gnatz, F. Geiselbrechtinger, W.
Hesse, B. Krieg-Brueckner, A. Laut, T. A. Matzner, B. Moeller, H.
Partsch, P. Pepper, K. Samelson, M. Wirsing, H. Woessner, ““Report
on a Wide Spectrum Language for Program Specification and Devel-
opment” (tentative version), Institut fuer Informatik der TU

References 463

Muenchen, TUM-18104, 1981, also in: Lecture Notes in Comptuer Sci-
ence, Springer-Verlag, New York, 1981.

[BBDG81b]
Bauer, F.L., M. Broy, W. Dosch, R. Gnatz, B. Krieg-Brueckner, A.
Laut, M. Luckmann, T. A. Matzner, B. Moeller, H. Partsch, P. Pep-
per, K. Samelson, R. Steinbrueggen, M. Wirsing, H. Woessner,
“Programming in a Wide Spectrum Language: a Collection of Exam-
ples,” Science of Computer Programming Vol. 1, 1981, pp. 73-114.

[BBG 78]
Beeri, C., P. A. Bernstein, and N. Goodman, ““A Sophisticate’s Intro-
duction to Database Normalization Theory,”” Proc. 4th International
Conference on Very Large Databases, West Berlin, September 1978.

[BC75]
Bobrow, D., and A. Collins, (eds.), Representation and Understanding,
Academic Press, New York, 1975.

[BD77]
Burstall, R. M., and J. L. Darlington, ‘““A Transformation System for
Developing Recursive Programs,” Journal of the ACM, Vol. 24, No.
1, January 1977.

[BD81]
Barr, A., and J. Davidson, ‘“Representation of Knowledge,” in A.
Barr and E. Feigenbaum (eds.), Handbook of Artificial Intelligence,
William Kaufmann Inc., 1981.

[BDMN73]
Birtwistle, G.M., O.-J. Dahl, B. Myhrhaug, K. Nygaard, Simula
Begin, Van Nostrand Reinhold, New York, 1973.

[BF79]
Buneman, O.P., and R.E. Frankel, “FQL— A Functional Query
Language,” Proc. 1979 ACM SIGMOD International Conference on the
Management of Data, Boston, Mass., May 1979,

[BFNS81]
Buneman, O.P., R.E. Frankel, and R. Nikhil, “A Practical Func-
tional Programming System for Databases,” Proc. ACM Conference
on Functional Programming and Archictecture, New Hampshire, 1981.

[BFN82]
Buneman, O.P., R.E. Frankel, and R. Nikhil, “An Implementation
Technique for Database Query Languages,”” ACM Transactions on
Database Systems, Vol. 7, No. 2, June 1982.

[BG80a]
Bobrow, D. and Goldstein, I., “Representing Design Alternatives,”’
Proc. Society for Study of Artificial Intelligence and Simulation of Behav-
ior Conference, Amsterdam, The Netherlands, July 1980.

[BG80b]
Burstall, R.M., and J. A. Gougen, “The Semantics of CLEAR: A
Specification Language,” Proc. Copenhagen Winter School on Abstract
Software Specification, Copenhagen, Denmark, 1980.

464 On Conceptual Modeling

[BHR80]
Bayer, R., H. Heller, and A. Reiser, “‘Parallelism and Recovery in

Database Systems,” ACM Transactions on Database Systems, Vol. 5,
No. 2, June 1980.

[B182]
Borning, A.H., and D.H. Ingalls, “Multiple Inheritance in
Smalltalk-80,” Proc. AAAI National Conference, Pittsburgh, Penn.,
August 1982.

[BISKS81]
Biskup, J., “Null Values in Data Base Relations,” in [GM78].

[BJ78]
Bjorner, D., and C.B. Jones, The Vienna Development Method,
Springer-Verlag, New York, 1978.

[BL82]
Brachman, R.J., and H. Levesque, “Competence in Knowledge Rep-

resentation,” Proc. AAAI National Conference, Pittsburgh, Penn.,
August 1982, pp. 189-192.

[BM76]
Basu, S., and J. Misra, “Some Classes of Naturally Provable Pro-
grams,” 2nd International Conference on Software Engineering, San
Francisco, October 1976.

[BM77]
Buneman, O.P., and H.L. Morgan, ‘Alerting Techniques for Data-
base Systems,” IEEE COMPSAC Conference, Chicago, Ill., Novem-
ber 1977.

[BMS80]
Burstall, R.M., D.B. MacQueen, and D.T. Sanella, “HOPE: an

Experimental Applicative Language,” Proc. Lisp Conference,
Stanford, Calif., 1980.

[BMWS82]
Borgida, A.T., J. Mylopoulos, and H.K.T. Wong, ‘“Methodological
and Computer Aids for Interactive Information System Design,” in
H.J. Schneider and A. Wasserman (eds.), Automated Tools for
Information System Design — Proc. of IFIP Conféerence, North-Holland,
Amsterdam, The Netherlands, 1982.

[BOBR75]
Bobrow, D.G., “Dimensions of Representations,” in [BC75].

[BOBR77]
Bobrow, D.G., “A Panel on Knowledge Representation,” Proc. 5th

International Joint Conference on Artificial Intelligence, Cambridge,
Mass., August 1977.

[BORGS1]
Borgida, A.T., “On the Definition of Specialization Hierarchies for

Procedures,” Proc. 7th International Joint Conference on Artificial Intel-
ligence, Vancouver, B.C., Canada, August 1981.

References 465

[BORGS2a]
Borgida, A.T., “Conceptual Modeling for Information System Devel-

opment,” Proc. Ist AUC Conference on Databases, Medellin, Colom-
bia, August 1982,

[BORG82b]
Borgida, A.T., “Prospectus for Research on Flexible Information
Systems,”” Dept. of Computer Science, Rutgers Univ., 1982.

[BOWL77]

Bowles, K. L., Microcomputer Problem Solving Using Pascal, Springer-
Verlag, New York, 1977.

[BP80]
Barwise, J., and J. Perry, ““The Situation Underground,” unpublished
manuscript, 1980.

[BP81a]

Barwise, J., and J. Perry, “‘Situations and Attitudes,” Journal of Phi-
losophy, Vol. 78, No. 11, October 1981, pp. 668-691.

[BP81b]
Barwise, J., and J. Perry, “‘Semantic Innocence and Uncompromising
Situations,” in P. A. French, T.E. Uehling, Jr., and H. K. Wettstein,
(eds.), The Foundations of Analytic Philosophy, Midwest Studies in
Philosophy, Vol. VI, Univ. of Minnesota Press, Minneapolis, 1981,
pp. 387-404.

[BP81c]
Broy, M., and P. Pepper, ‘“Program Development as a Formal Activ-
ity,” IEEE Transactions on Software Engineering, Vol. SE-7, No. 1,
January 1980.

[BPP76]
Bracchi, G., P. Paolini, and G. Pelagatti, ‘“Binary Logical Associa-
tions in Data Modelling,” in J. M. Nijssen (ed.), Modelling in Data-
base Management Systems (Proc. IFIP TC2 Conference,
Freudenstadt), North-Holland, Amsterdam, The Netherlands, 1976.

[BR70]
Buxton, J.N., and B. Randell (eds.), Software Engineering Techniques,
NATO, 1970 (report on a conference sponsored by the NATO Sci-
ence Committee, Rome, Italy, October 27-31, 1969).

[BRAC76]
Brachman, R.J., “A Structural Paradigm for Representing Knowl-
edge,” BBN Report No. 3605, Bolt, Beranek and Newman Inc.,
Cambridge, Mass., 1976.

[BRAC79]
Brachman, R.J., “On the Epistemological Status of Semantic Net-
works”” in [FIND79], pp. 3-50.

[BRAC80a]

Brachman, R.J., “I Lied about the Trees,” unpublished manuscript,
1980.

466 On Conceptual Modeling

[BRACS80b]
Brachman, R.J., “An Introduction to KL-ONE,” in R.J. Brachman,
et al. (eds.), Research in Natural Language Understanding, Annual
Repori (1 Sept. 78-31 Aug. 79), Bolt, Beranek and Newman Inc.,
Cambridge, Mass., 1980, pp. 13-46.

[BRES72]
Bressan, A., A General Interpreted Modal Calculus, Yale Univ. Press,
New Haven, Conn., 1972.

[BRIN75]
Brinch Hansen, P., “The Programming Language Concurrent Pas-
cal,” IEEE Transactions on Software Engineering, Vol. SE-1, No. 4,
June 1975, pp. 199-207.

[BROD78]
Brodie, M. L., “Specification and Verification of Database Semantic
Integrity,” Ph.D. thesis (Computer Systems Research Group
Technical Report No. 91), Univ. of Toronto, April 1978.

[BRODS0a]
Brodie, M. L., “The Application of Data Types to Database Semantic
Integrity,” Information Systems, Vol. 5, No. 4, 1980.

[BRODS0b]
Brodie, M. L., “Data Abstraction, Databases and Conceptual Model-

ing,” Proc. G6th International Conference on Very Large Databases,
Montreal, Que., Canada, October 1980.

[BRODSOC]
“Data Quality in Information Systems,” Information & Management,
Vol. 3, 1980.

[BRODS81a]
Brodie, M.L., ‘“Association: A Database Abstraction for Semantic

Modelling,” Proc. 2nd International Entity-Relationship Conference,
Washington, D.C., October 1981.

[BRODS81b]
Brodie, M. L., ““On Modelling Behavioural Semantics of Data,” Proc.

7th International Conference on Very Large Databases, Cannes, France,
September 1981.

[BRODS2]
Brodie, M.L., ‘“Axiomatic Definitions for Data Model Semantics,”
Information Systems, Vol. 7, No. 2, 1982.

[BROO75]
Brooks, F.P., Jr., The Mythical Man-Month: Essays on Software Engi-
neering, Addison-Wesley, Reading, Mass., 1975.

[BROW73]
Brown, J.S., “Steps Towards Automatic Theory Formation,” Proc.

International Joint Conference on Artificial Intelligence, Palo Alto,
Calif., August 1973.

References 467

[BROW380]
Browne, J.C., The Interaction of Operating Systems and Software
Engineering,” Proc. IEEE, Vol. 68, No. 9, September 1980.

[BRUC75]

Bruce, B., ““Case Systems for Natural Language,” Artificial Intelli-
gence, Vol. 6, 1975, pp. 327-360.

[BS78]
Brodie, M. L., and J. W. Schmidt, “What is the Use of Abstract Data
Types?,” Proc. 4th International Conference on Very Large Databases,
West Berlin, September 1978.

[BS79]
Bentley, J.L., and M. Shaw, “An Alphard Specification of a Correct
and Efficient Transformation on Data Structures,” Proc. [EEE
Conference on Specifications of Reliable Software, April 1979, pp. 222-
237.

[BS80]
Brachman, R.J., and B. Smith, Special Issue on Knowledge Repre-
sentation, SIGART Newsletter, No. 50, February 1980.

[BS82a]
Bobrow, D.G., and M.]J. Stefik, ““Loops: An Object Oriented Pro-
gramming System for Interlisp,” Draft Report, Xerox PARK, 1982.

[BS82b]
Brodie, M.L., and J. W. Schmidt (eds.), “Final Report of the
ANSI/X3/SPARC DBS-SG Relational Database Task Group,”
SIGMOD Record, Vol. 12, No. 4, July 1982.

[BS82¢]

Brodie, M.L., and E.O. Silva, ““Active and Passive Component
Modelling: ACM/PCM,” in [0OSV82], pp. 41-91.

[BSD82]
Byrd, R.J., S.E. Smith, S.P. de Jong, ‘““An Actor-Based Program-

ming System,” SIGOA Conference on Office Information Systems, June
1982.

[BSR80]
Bernstein, P. A., D. W, Shipman, and J.B. Rothnie, “Concurrency
Control in a System for Distributed Databases (SDD-1), ACM Trans-
actions on Database Systems, Vol. 5, No. 1, March 1980.

[BUNE79]
Bunemann, O. and E. Clemons, ‘““Efficiently Monitoring Relational
Databases,” ACM Transactions on Database Systems, Vol 4., No. 3,
September 1979,

[BURGT5]

Burge, W.H., Recursive Programming Techniques, Addison-Wesley,
Reading, Mass., 1975.

468 On Conceptual Modeling

[BW77]
Bobrow, D., and T. Winograd, ‘“An Overview of KRL, a Knowledge
Representation Language,” Cognitive Science, Vol. 1, No. 1, January
1977.

[Bws1]
Borgida, A.T., and B.K.T. Wong, “Data Models and Data Manipu-
lation Languages: Complimentary Semantics and Proof Theory,”
Proc. 7th International Conference on Very Large Databases, Cannes,
France, September 1981, pp. 260-271.

[BYTES1]
Special Issue on Smalltalk, BYTE, August 1981.
[B.281]

Brodie, M.L., and S.N. Zilles (eds.), Proc. Workshop on Daita
Abstraction, Databases, and Concepiual Modelling, SIGART Newsletter,
No. 74, January 1981; SIGMOD Record, Vol. 11, No. 2, February
1981: SIGPLAN Notices, Vol. 16, No. 1, January 1981.

[CB74]
Chamberlin, D.D., and R.F. Boyce, “SEQUEL: a Structured English
Query Language,” Proc. 1974 ACM SIGMOD International
Conference on the Management of Data, 1974.

[CBLL82]
Curry, G., L. Baer, D. Lipkie, B. Lee, “Traits: An Approach to
Multiple-Inheritance Subclassing,” Proc. Conference on Office
Information Systems, SIGOA Newsletter, Vol. 3, Nos. 1 and 2, June
1982.

[CHAMT5]
Chamberlin, D.D., et. al., “*Views, Authorization and Locking in a
Relational Data Base System,” Proc. [975 National Computer
Conference, Anaheim, Calif., May 1975.

[CHAMT6]
Chamberlin, D.D., “Relational Database Management Systems,”’
Computing Surveys, Vol. 8, No. 1, March 1976.

[CHEA81]
Cheatham, T.E., “Program Refinement by Transformation,” Proc.

5th International Conference on Software Engineering, San Diego,
Calif., March 1981.

[CHENT6]
Chen, P.P.S., “The Entity-Relationship Model: Toward a Unified
View of Data,” ACM Transactions on Database Systems, Vol. 1, No.
1, March 1976.

[CHEN78]
Chen, P.P.S., The Entity-Relationship Approach to Logical Database

Design, Monograph No. 6, QED Information Sciences, Wellesley,
Mass., 1978.

References 469

[CHIL77]
Childs, D.L., “Extended Set Theory,” Proc. 3rd International
Conference on Very Large Databases, Tokyo, Japan, October 1977.

[CHURA40]
Church, A., “A Formulation of the Simple Theory of Types,” Jour-
nal of Symbolic Logic, Vol. 5, 1940, pp. 56-68.

[CHUR41]
Church, A., “The Calculi of Lambda-Conversion,” Annals of Mathe-
matics Studies No. 6, Princeton Univ. Press, 1941.

[CcL73]
Chang, C.L., and R.C.T. Lee, Symbolic Logic and Mechanical Theo-
rem Proving, Academic Press, New York, 1973.

[CLAR78]
Clark, K. L., “Negation as Failure,” in [GM78].

[CLINS81]
Clinger, W.D., “Foundations of Actor Semantics,” Technical Report
MIT/AI/TR-633, MIT Laboratory for Artificial Intelligence, May
1981.

[CM79]
Carlson, E. and W. Metz, ““A Design for Table-Driven Display Gen-
eration and Management Systems,” Technical Report, IBM Research
Laboratory, San Jose, Calif., 1979.

[CODAT1]
CODASYL Data Base Task Group, April 1971 Report.

[CODD70]
Codd, E.F., “A Relational Model of Data for Large Shared Data
Banks,” Communications of the ACM, Vol. 13, No. 6, June 1970, pp.
377-387.

[CODD71]
Codd, E.F., “A Database Sublanguage Founded on the Relational
Calculus,” Proc. SIGFIDET Workshop, San Diego, Calif., 1971.

[CODD72]
Codd, E.F., “Relational Completeness of Database Sublanguages,”

in R. Rustin (ed.), Data Base Systems, Prentice-Hall, Englewood
Cliffs, N.J., 1972.

[CODD79]
Codd, E.F., “Extending the Database Relational Model to Capture
More Meaning,” ACM Transactions on Database Systems, Vol. 4, No.
4, December 1979, pp. 397-434; IBM Research Report RJ2599, San
Jose, Calif., August 1979.

[CODDS82]
Codd, E.F., “Relational Database: A Practical Foundation for Pro-
ductivity,” Communications of the ACM, Vol. 25, No. 2, February
1982.

470 On Conceptual Modeling

[COHET78]
Cohen, P.R., On Knowing What to Say: Planning Speech Acts, Ph.D.
thesis (TR-118), Dept. of Computer Science, Univ. of Toronto,
1978.

[CWAMT5]
Collins, A., E. Warnock, N. Aiello, and M. Miller, “Reasoning from
Incomplete Knowledge,” in [BC75].

[DATES1]
Date, C.J., An Introduction to Database Systems, 3rd ed., Addison-
Wesley, Reading, Mass., 1981.

[DATES3]
Date, C.J., An Introduction to Database Systems Volume [I, Addison-
Wesley, Reading, Mass., 1983.

[DAVISS]
Davis, M., Computability and Unsolvability, McGraw-Hill, New York,
1958.

[DAVITT]
Davis, R., “Interactive Transfer of Expertise: Acquisition of New
Inference Rules,” Proc. 5th International Joint Conference on Artificial
Intelligence, Cambridge, Mass., August 1977.

[DB82]
Dayal, U., and P. A. Bernstein, “On the Updatability of Network
Views — Extending Relational View Theory to the Network Model,”
Information Systems, Vol. 7, No. 1, 1982.

[DD80]
Demers, A.J., and J.E. Donahue, ‘“‘Data Types, Parameters, and

Type Checking,” Proc. ACM Symposium on Principles of Programming
Languages, SIGACT and SIGPLAN, January 1980, pp. 12-23.

[DEJOS0]
de Jong, S.P., “The System for Business Automation (SBA): a Uni-

fied Application Development System,’” Proc. 1980 [FIP Congress,
Tokyo, Japan, 1980.

[DENN74]

Dennis, J.B., “First Version of a Data Flow Procedure Language,”

Proc. Symposium on Programming, Institut de Programmation, Univ.
of Paris, Paris, France, April 1974, 241-271.

[DEUTS1]
Deutsch, L.P., “In Summary of Workshop Session on Types,”” Proc.

Workshop on Data Abstraction, Databases, and Conceptual Modelling,
SIGPLAN Notices, Vol. 16, No. 1, January 1981, p. 49.

[DH72]
Dahl, O.-J., and C. A.R. Hoare, ‘“‘Hierarchical Program Structures,”

in O.-J. Dahl, E.W. Dijkstra, and C. A.R. Hoare (eds.), Structured
Programming, Academic Press, New York, 1972, pp. 175-220.

References 471

[DH73]
Duda, R.O., and P.E. Hart, Pattern Classification and Scene Analysis,
Wiley-Interscience, New York, 1973,

[DIJIK68]

Dijkstra, E. W., “Goto Statement Considered Harmful,” Communica-
tions of the ACM, Vol. 11, No. 3, March 1968, pp. 147-148.

[DIIK72]
Dijkstra, E. W. “Notes on Structured Programming,” in 0.-J. Dahl,
E.W. Dijkstra, and C.A.R. Hoare (eds.), Structured Programming,
Academic Press, New York, 1972.

[DLIK76]

Dijkstra, E.W., 4 Discipline of Programming, Prentice-Hall, Engle-
wood Cliffs, N.J., 1976.

[DISE77]
diSessa, A., ““On Learnable Representations of Knowledge: A Mean-
ing for the Computational Metaphor,” Memo MIT/AIM-441, MIT
Laboratory for Artificial Intelligence, September 1977.

[DK75]
Davis, R., and J. King, “An Overview of Production Systems,”
Memo AIM-271, Stanford Artificial Intelligence Laboratory, 1975.

[DK76]
DeRemer, F., and H.H. Kron, “Programming-in-the-Large vs.

Programming-in-the-Small,” JEEE Transactions on Software Engineer-
ing, Vol. SE-2, No. 2, June 1976, pp. 80-86.

[DMN68]

Dahl, O.-J., B. Myrhaug, and K. Nygaard, Simula 67 Common Base
Language, Pub. S-22, Norwegian Computing Center, Oslo, 1968.

[DN66]
Dahl, O.-J.,, and K. Nygaard, ‘“‘SIMULA — An ALGOL-Based Simula-

tion Language,” Communications of the ACM, Vol. 9, No. 9, Septem-
ber 1966, pp. 671-678.

[DoD78]
Department of Defense, Steelman Requirements for High Order Com-
puter Programming Languages, June 1978,

[DoD79]
Department of Defense, Revised Steelman Requirements for High
Order Computer Programming Languages, 1979.

[DoD80]
Department of Defense, Requirements Jor Ada Programming Support
Environments: Stoneman, February 1980.

[DOYL80]

Doyle, J., “A Model for Deliberation, Action and Introspection,”
Technical Report MIT/AI/TR-581, MIT Laboratory for Artificial
Intelligence, 1980.

472 On Conceptual Modeling

[DR79]
Davis, A.M., and T.G. Rauscher, ‘“Formal Techniques and Auto-
matic Processing to Ensure Correctness in Requirements Specifica-

tions,” Proc. IEEE Conference on Specifications of Reliable Software,
IEEE Catalog No. 79 CH1401-9C, 1979, pp. 15-35.

[DT80]
Deutsch, L.P., and E. A. Taft, ‘‘Requirements for and Experimental
Programming Environment,” Xerox PARC Report CSL-80-10, 1980.

[DV77]
Davis, C.G., and C.R. Vick, “The Software Development System,”

[EEE Transactions on Software Engineering, Vol. SE-3, No. 1, January
1977.

[EARL71]

Earley, J., “Toward an Understanding of Data Structures,” Commu-
nications of the ACM, Vol. 14, No. 10, October 1971, pp. 617-627.

[EGL76]
Eswaren, K.P., J.N. Gray, R.A. Lorie, and I.L. Traiger, “The
Notions of Consistency and Predicate Locks in a Database System,”
Communications of the ACM, Vol. 19, No. 11, November 1976.

[ESWAT6]
Eswaren, K. P., “Specifications, Implementations and Interactions of
a Trigger Subsystem in an Integrated Database System,” IBM
Research Report RJ1820, San Jose, Calif., August 1976.

[FAHL79]
Fahlman, S.E., NETL: A System for Representing and Using Real-
World Knowledge, MIT Press, 1979.

[FALKS80]
Falkenberg, E.D., “Conceptualization of Data,” Infotech State-of-

the-Art Report on Data Design, Pergamon Infotech Limited, London,
1980.

[FAUSS1]
Faust, G., “Semiautomatic Translation of COBOL into HIBOL,”
M.S. thesis (Technical Report MIT/LCS/TR-256), MIT Laboratory
for Computer Science, March 1981.

[FEIG77]
Feigenbaum, E. A., “The Art of Artificial Intelligence: Themes and
Case Studies of Knowledge Engineering,” Proc. 5th International Joint
Conference on Artificial Intelligence, Cambridge, Mass., August 1977.

[FIND79]
Findler, N. V., Associative Networks: Representation and Use of Knowl-
edge by Computer, Academic Press, New York, 1979.

[FLOY67]
Floyd, R.W., “Assigning Meanings to Programs,” in J.T. Schwartz

(ed.), Proc. Symposium in Applied Mathematics, Vol. 19, American
Mathematical Society, 1967, pp. 19-32.

References 473

FN79]
[Feiertag, R., and P.G. Neumann, “The Foundations of a Provably

Secure Operating System (PSOS),” Proc. National Computer
Conferernice, 1979, pp. 329-334.

[FOGG82] .
Fogg, D., “‘Parser Support for Abstract Data Types in INGRES,”
Masters Report, Univ. of California, Berkeley, September 1982.

FW76a]

[Friedman, D.P., and D.S. Wise, ““CONS Should Not Evaluate its
Arguments,”’ in Automata, Languages, and Programming, Edinburgh
Univ. Press, Edinburgh, Scotland, 1976.

[FW76b]
Friedman, D.P., and D.S. Wise, “The Impact of Applicative Pro-
gramming on Multiprocessing,” Proc. ACM International Conference
on Paralle! Processing, 1976, pp. 263-272.

[GANES0]
Ganes, C. P., “Data Design in Structured System Analysis,” in
P.Freeman and A.I. Wasserman (eds.), Turorial on Software Design
Techniques, 1980.

[GBM82]
Greenspan, S., A.T. Borgida, and J. Mylopoulos, ‘“‘Capturing More
World Knowledge in the Requirements Specification,” Proc. 6th
International Conféerence on Software Engineering, Tokyo, Japan, 1982.

[GERH75]
Gerhart, S. L., “Knowledge About Programs: a Model and Case

Study,” Proc. of International Conference on Reliable Software, June
1975, pp. 88-95.

[GH78]
Guttag, J. V., and J.J. Horning, “The Algebraic Specification of
Abstract Data Types,” Acta Informatica, Vol. 10, 1978, pp. 27-52.

[GH80]
Guttag, J. V., and J.J. Horning, ‘“‘Formal Specification as a Design
Tool,” Proc. ACM Symposium on Principles of Programming Lan-
guages, SIGACT and SIGPLAN, January 1980, pp. 251-261.

[GHM78]
Guttag, J. V., E. Horowitz, and D.R. Musser, ““Abstract Data Types
and Software Validation,” Communications of the ACM, Vol. 21, No.
12, December 1978, pp. 1048-1064.

[GKB82]
Gustafsson, M. R., T. Karlsson, and Bubenko, J. A., Jr., “A Declara-
tive Approach to Conceptual Information Modelling,” in [0SV82]
pp. 93-142. .

[GM78]

Gallaire, H., and J. Minker (eds.), Logic and Data Bases, Plenum
Press, New York, 1978.

9

474 On Conceptual Modeling

[GM80]
Goodenough, J.B., and C.L. McGowan, ‘‘Software Quality Assur-
ance: Testing and Validation,” Proc. [EEE, Vol. 68, No. 9, September
1980.

[GMS77]
Geschke, C.M., J.H. Morris, Jr., and E.H. Satterthwaite, *Early
Experience with Mesa,” Communications of the ACM, Vol. 20, No. 8,
August 1977, pp. 540-553.

[GMW79]
Gordon, M.J., A.J. Milner, and C.P. Wadsworth, “Edinburgh

LCF,” Lecture Notes in Computer Science, No. 78, Springer-Verlag,
New York, 1979.

[GOLD73]
Goldberg, J., “Proceedings of a Symposium on the High Cost of
Software,” Technical Report, Stanford Research Institute, Stanford,
Calif., September 1973.

[GOOD77]
Good, D.I., “Constructing Verified and Reliable Communications

Processing Systems,”’ Software Engineering Notes, Vol. 2, No. 5, Octo-
ber 1977, pp. 8-13.

[GP77]
Goldstein, I., and S. Papert, ‘“Artificial Intelligence, Language, and
the Study of Knowledge,”” Cognitive Science, Vol. 1, No. 1, 1977.

[GR77]
Goldstein, 1., and R.B. Roberts, ‘“NUDGE: A Knowledge-Based
Scheduling Program,” Proc. 5th International Joint Conference on Arti-
ficial Intelligence, Cambridge, Mass., August 1977.

[GRAY78]
Gray, J.N., “Notes on Data Base Operating Systems,” Proc.
Advanced Course on Operating Systems, Munich, West Germany, in

Lecture Notes in Computer Science, No. 60, Springer-Verlag, New
York, 1978.

[GREE69a]
Green, C., “The Application of Theorem Proving to Question-

Answering Systems,” Ph.D. thesis, Dept. of Electrical Engineering,
Stanford Univ., 1969.

[GREE69b]
Green, C., “Theorem Proving by Resolution as a Basis for
Question-Answering Systems,’’ in D. Michie and B. Meltzer (eds.),

Machine Intelligence 4, Edinburgh Univ. Press, Edinburgh, Scotland,
1969.

[GRIF76]
Griffiths, P., and B. Wade, ‘““An Authorization Mechanism for a

Relational Data Base System,” ACM Transactions on Database Sys-
tems, Vol. 2, No. 3, September 1976.

References 475

[GTW78]
Goguen, J. A., J. W. Thatcher, and E. G. Wagner, ‘“An Initial Algebra
Approach to the Specification, Correctness, and Implementation of
Abstract Data Types,” in R. Yeh (ed.), Current Trends in Program-
ming Methodology, Vol. 1V, Prentice-Hall, Englewood Cliffs, N.J.,
1978.

[GUAR78]
Guarino, L.R., “The Evolution of Abstraction in Programming Lan-
guages,”’ Technical Report CMU-CS-78-120, Carnegie-Mellon Univ.,
May 1978.

[GUTT77]
Guttag, J. V., “Abstract Data Types and the Development of Data
Structures,” Communications of the ACM, Vol. 20, No. 6, June 1977,
pp. 396-404.

[GUTTS0]
Guttag, J. V., “Notes on Type Abstraction (Version 2).,” IEEE
Transactions on Software Engineering, Vol. SE-6, No. 1, January 1980,
pp. 13-23.

[GW79]
Gerhart, S.L., and D.S. Wile, “Preliminary Report on the Delta
Experiment: Specification and Verification of a Multiple-User File
Updating Module,” Proc. IEEE Conference on Specifications of Reliable
Software, IEEE Catalog No. 79 CH1401-9C, 1979, pp. 198-211.

[GY76]
Gerhart, S.L., and L. Yelowitz, “‘Observations of Fallibility in Appli-
cations of Modern Programming Methodologies,” IEEE Transactions
on Software Engineering, Vol. SE-2, No. 5, September 1976, pp. 195-
207.

[HABE73]
Habermann, A.N., “Critical Comments on the Programming Lan-
guage Pascal,” Acta Informatica, Vol. 3, 1973, pp. 47-57.

[HAL79]
Hewitt C., G. Attardi, and H. Lieberman, *‘Specifying and Proving
Properties of Guardians for Distributed Systems,” Proc. Conference

on Semantics of Concurrent Computation, INRIA, Evian, France, July
1979.

[HARDSO]
Hardgrave, W.T., ‘Positional Set Notation,” internal report,
National Bureau of Standards, February 1980.

[HAS80]
Hewitt, C., G. Attardi, and M. Simi, “Knowledge Embedding with a

Description System,” Proc. Ist AAAI National Conference, August
1980.

[HAYE74]
Hayes, P.J., ““Some Problems and Non-Problems in Representation

Theory,” Proc. AISB Summer Conference, Essex Univ., Essex, Great
Britian, 1974.

476 On Conceptual Modeling

[HAYE77]
Hayes, P.J., “In Defense of Logic,” Proc. 5th International Joint

Conference on Artificial Intelligence, Cambridge, Mass., 1977, pp. 559-
565.

[HAYE78]
Hayes, P.J., “The Ontology of Liquids,” unpublished manuscript,
1978.

[HAYE79]
Hayes, P.J., “The Logic of Frames,” in D. Metzing (ed.), Frame
Conceptions and Text Understanding, Walter de Gruyter and Co., Ber-
lin, 1979, pp. 46-61.

[HAZE76]
Hazen, A., “Expressive Completeness in Modal Language,” Journal
of Philosophical Logic, Vol. 5, 1976.

[HB77]
Hewitt, C., and H. Baker, “Laws for Communicating Parallel Pro-
cesses,”” Proc. 1977 IFIP Congress, 1977.

[HBS73]
Hewitt, C., P. Bishop, and R. Steiger, “A Universal Modular
ACTOR Formalism for Artificial Intelligence,” Proc. International
Joint Conference on Artificial Intelligence, Palo Alto, Calif., August

1973.

[HEND?75]
Hendrix, G., “Expanding the Utility of Semantic Networks through

Partitioning,” Proc. International Joint Conference on Artificial Intelli-
gence, Thilisi, USSR, September 1975.

[HENI79]
Heninger, K.L., “Specifying Software Requirements for Complex
Systems: New Techniques and Their Applications,”” Proc. IEEE
Conference on Specifications of Reliable Software, IEEE Catalog No. 79
CH1401-9C, 1979, pp. 1-14.

[HENKS50]
Henkin, L., “Completeness in the Theory of Types,” Journal of Sym-
bolic Logic, Vol. 15, 1950, pp. 81-91.

[HEWI69]
Hewitt, C.E., “PLANNER: A Language for Proving Theorems in

Robots,” Proc. International Joint Conference on Artificial Intelligence,
Washington, D.C., May 1969.

[HEWI71]
Hewitt, C.E., “PLANNER: A Language for Proving Theorems in
Robots,” Proc. International Joint Conference on Artificial Intelligence,
London, Great Britian, August 1971.

[HEWI72]
Hewitt, C.E., Description and Theoretical Analysis (Using Schemata) of

PLANNER: A Language for Proving Theorems and Manipulating
Models in a Robot, Ph.D. thesis, Dept. of Mathematics, MIT, 1972.

References 477

[HEWI75]
Hewitt, C.E., “How To Use What You Know,” Proc. Internationai
Joint Conference on Artificial Intelligence, Tbilisi, USSR, August 1975.

[HEWI77]

Hewitt, C.E., “Viewing Control Structures as Patterns of Passing
Messages,”” Artificial Intelligence, Vol. 8, 1977, pp. 323-364.

[HEWI80]
Hewitt, C.E., “The Apiary Network Architecture for Knowledgeable
Systems,” Conference Record of the 1980 Lisp Conference, Stanford
Univ., Stanford, Calif., August 1980.

[HG74]

Hewitt, C.E., and I. Greiff, ““Actor Semantics of PLANNER-73,”
Working Paper No. 81, MIT Laboratory for Artificial Intelligence,
1974.

[HINT62]

Hintikka, J., Knowledge and Belief: An Introduction to the Logic of the
Two Notions, Cornell Univ. Press, 1962.

[HK81]
Hecht, M.S., and L. Kershberg, ‘“Update Semantics for the Func-
tional Data Model,” Data Base Research Report No. 4, Bell Labs,
Holmdell, N.J., 1981.

[HL82]
Haskin, R.L., and R. A. Lorie, “On Extending the Functions of a
Relational Database System,” Proc. 1982 ACM SIGMOD [nterna-

tional Conference on the Management of Data, Orlando, Fla., 1982, pp.
207-212.

[HM75]
Hammer, M., and D. McLeod, ‘“Semantic Integrity in a Relational
Database System,” Proc. Ist International Conference on Very Large
Databases, Framingham, Mass., September 1975, pp. 25-47.

[HM76]
Hammer, M., and D. McLeod, “A Framework for Database Seman-
tic Integrity,” Proc. 2nd International Conference on Sofiware Engineer-
ing, San Francisco, Calif., October 1976.

[HM78]
Hammer, M., and D. McLeod, “The Semantic Data Model: a Model-
ling Mechanism for Database Applications,” Proc. 1978 ACM
SIGMOD International Conference on the Management of Data, Aus-
tin, Texas, May-June 1978.

[HMS81]
Hammer, M., and D. McLeod, ‘“‘Database Description with SDM: A
Semantic Database Model,”” ACM Transactions on Database Systems,
Vol. 6, No. 3, September 1981.

[HOARG69]
Hoare, C. A.R., ““An Axiomatic Basis for Computer Programming,”’

Communications of the ACM, Vol. 12, October 1969, pp. 576-580,
583.

478 On Conceptual Modeling

[HOAR724]

Hoare, C. A.R., “Proof of Correctness of Data Representations,”
Acta Informatica, Vol. 1, No. 4, 1972, pp. 271-281.

[HOAR72b]
Hoare, C. A.R., ““Notes on Data Structuring,” in O.-J. Dahl, E. W,
Dijkstra, and C.A.R. Hoare (eds.), Structured Programming, Aca-
demic Press, New York, 1972, pp. 83-174.

[HOAR78]
Hoare, C. A.R., “Communicating Sequential Processes,” Communi-
cations of the ACM, Vol. 21, No. 8, August 1978.

[HOT76]
Hall, P., J. Owlett, and S.J.P. Todd, ‘“Relations and Entities,” in
J.M. Nijssen (ed.), Modelling in Database Management Systems,
Elsevier North-Holland, New York, 1976.

[HOUS77]
Housel, B.C., “A Unified Approach to Data Conversion,” Proc. 3rd

International Conference on Very Large Databases, Tokyo, Japan,
1977.

[HOWD79]
Howden, W.E., “An Analysis of Software Validation Techniques for
Scientific Programs,” Technical Report DM-171-IR, Dept. of Mathe-
matics, Univ. of Victoria, Victoria, B.C., Canada, March 1979.

[HR79]
Hunt, H.B., and D.J. Rosenkrantz, “The Complexity of Testing Pre-
dicate Locks,” Proc. 1979 ACM SIGMOD International Conference on
the Management of Data, Boston, Mass., May 1979.

[HSW75]
Held, G., M. Stonebraker, and E. Wong, “INGRES: A Relational
Database System,” Proc. AFIPS 1975 National Computer Conference,
Vol. 44, 1975.

[HW73]
Hoare, C. A.R., and N. Wirth, “An Axiomatic Definition of the
Programming Language PASCAL.” Acta Informatica, Vol. 2, No. 4,
1973, pp. 335-355.

[HWY79]
Housel, B.C., V. Waddle, and S.B. Yao, “The Functional Depen-
dency Model for Logical Database Design,” Proc. 5th International

Conference on Very Large Databases, Rio de Janeiro, Brazil, October
1979.

[HY79] ,
Hevner, A.R., and S.B. Yao, “Query Processing in Distributed

Database Systems,” [EEE Transactions on Software Engineering, Vol.
SE-5, No. 3, 1979.

References 479

[IBHK79]
Ichbiah, J.D., J.P.G. Barnes, J.-C. Heliard, B. Krieg-Brueckner, O.
Roubine, and B. A. Wichmann, ‘‘Rationale for the Design of the Ada
Programming Language,” SIGPLAN Notices, Vol. 14, No. 6, Part B,
1979.

[IEEE79a]
IEEE Computer Society (eds.), Workshop on Quantitative Software

Models for Reliability, Complexity, and Cost: an Assessment of the State
of the Art, IEEE Catalog No. TH0067-9, 1979.

[IEEE79b]

IEEE Computer Society (eds.), Proc. Conference on Specifications of
Reliable Software, IEEE Catalog No. 79 CH1401-9C, 1979.

[IKWL79]
Ichbiah, J.D., B. Krieg-Brueckner, B. A. Wichmann, H.F. Ledgard,
J.-C. Heliard, J.-R. Abrial, J. P. G. Barnes, and O. Roubine, *“‘Prelim-
inary Ada Reference Manual,” SIGPLAN Notices, Vol. 14, No. 6,
Part A, 1979.

[IKWL380]

Ichbiah, J.D., B. Krieg-Brueckner, B. A. Wichmann, H.F. Ledgard,
J.-C. Heliard, J.-R. Abrial, J. P.G. Barnes, M. Woodger, O. Roubine,
P.N. Hilfinger, and R. Firth, Reference Manual Jor the Ada Program-
ming Language: Proposed Standard Document, Department of
Defense, US Government Printing Office 008-000-00354-8, July
1980; also in: Lecture Notes in Computer Science, No. 106, Springer-
Verlag, New York, 1981.

[IKWL82]

Ichbiah, J. D., B. Krieg-Brueckner, B. A. Wichmann, H.F. Ledgard,
J.-C. Heliard, J.-L. Gailly, J.-R. Abrial, J.P. G. Barnes, M. Woodger,
O. Roubine, P.N. Hilfinger, and R. Firth, Reference Manual for the
Ada Programming Language, Draft Revised MIL-STD 1815; Draft
Proposed ANSI Standard Document for Editorial Review, US
Department of Defense, Honeywell Inc., and Alsys, July 1982; also
available from AdaTEC, ACM order no. 825820.

[IMB81]
Islam, N., T.J. Myers, and P. Broome, “A Simple Optimizer for
FP-like Languages,” Proc. ACM Conference on Functional Program-
ming and Architecture, New Hampshire, 1981.

[INGA78]
Ingalls, D.H., “The Smalltalk-76 Programming System: Design and
Implementation,” Conference Record of the Fifth Annual ACM Sympo-
sium on Programming Languages, Tucson, Arizona, January 1978.

[10S79]
International Organization for Standardization, Draft Specification Jor

the Computer Programming Language Pascal, 1SO/TC 97/SC 5 N,
1979.

480 On Conceptual Modeling

[ISRAS80]
Israel, D.J., “What’s Wrong with Non-Monotonic Logic?,” Proc. Ist

National Conference on Artifical Intelligence, American Association for
Artificial Intelligence, Stanford, Calif., 1980, pp. 99-101.

[ISRA82]
Israel, D.J., “On Interpreting Semantic Network Formalisms,” Inter-
national Journal of Computer Mathematics, (to appear in a special issue
on Computational Linguistics edited by N. Cercone); also available
as BBN Report No. 5117, Bolt, Beranek and Newman Inc., Cam-
bridge, Mass., 1982.

[IVER79]
Iverson, K. E., “Operators,” ACM Transactions on Programming Lan-
guages and Systems, Vol. 1, No. 2, 1979.

[JACO82]
Jacobs, B.E., “On Database Logic,”” Journal of the ACM, Vol. 29,
No. 2, April 1982, pp. 310-332.

[JL76]
Jones, A.K., and B. H. Liskov, “An Access Control Facility for Pro-

gramming Languages,” MIT Computation Structures Group and
Carnegie-Mellon Univ., MIT Memo 137, 1976.

[Js82]
Jarke, M., and J.W. Schmidt, “Query Processing Strategies in the
Pascal/R Relational Database Management System,” Proc. 1982
ACM SIGMOD International Conference on the Management of Data,
Orlando, Fla., June 1982.

[IW74]

Jensen, K., and N. Wirth, Pascal User Manual and Report, Springer-
Verlag, New York, 1974.

[KAHN79]

Kahn, K. M., “Creation of Computer Animation from Story Descrip-
tions,” Ph.D. thesis, MIT, 1979.

[KENT78]
Kent, W., Data and Reality, Elsevier North-Holland, New York,
1978.

[KH81]
Kornfeld, W. A., and Hewitt, C., “The Scientific Community Meta-

phor,” [EEE Transactions on Systems, Man, and Cybernetics, Vol.
SMC-11, No. 1, January 1981.

[KINGS82]
King, R., ““A Semantics-Based Methodology for Database Design
and Evolution,” Ph.D. thesis (Technical Report), Computer Science
Dept., Univ. of Southern California, October 1982.

[KL80a]
Keller, R.M., and G. Lindstrom, ‘Parallelism in Functional Pro-

gramming through Applicative Loops,”” Technical Report, Univ. of
Utah, 1980.

References 481

[KL80D]
Krieg-Brueckner, B., and D.C. Luckham, ‘“Anna: Towards a Lan-
guage for Annotating Ada Programs,” SIGPLAN Notices, Vol. 15,
No. 11, 1980, pp. 128-138.

[KLEE71]

Kleene, S.C., Introduction to Metamathematics, FElsevier North-
Holland, New York, 1971.

[KLVO8§2]
Krieg-Brueckner, B., D.C. Luckham, F. W. von Henke, and O. Owe,
Anna: a Language for Annotating Ada Programs, Springer-Verlag, New
York (to appear).

[KM82a]
King, R., and D. McLeod, ‘“‘Semantic Database Models,” in S.B.

Yao (ed.), Principles of Database Design, Prentice-Hall, Englewood
Cliffs, N.J. (to appear).

[KM82b]
King, R., and D. McLeod, “The Event Database Specification
Model,” Proc. Second International Conference on Databases: Improv-
ing Usability and Responsiveness, Jerusalem, Israel, June 1982.

[KM82c]
King, R., and D. McLeod, ““A Methodology and Tool for Database
Life-Cycle Management,” Technical Report, Computer Science
Dept., Univ. of Southern California, November 1982 (submitted for
publication).

[KNUT73]
Knuth, D.E., The Art of Computer Programming, Vol. I1: Fundamental
Algorithms, Second edition, Addison-Wesley, Reading, Mass., 1973.

[KOLAS2]
Kolata, G., “How Can Computers Get Common Sense?,” Science,
Vol. 217, No. 4566, September 24, 1982.

[KONOS2]
Konolige, K., “Circumscriptive Ignorance,” Proc. AAAI National
Conference, Pittsburgh, Penn., August 1982.

[KORNS82]
Kornfeld, W., “Concepts in Parallel Problem Solving,”” Ph.D. thesis,
MIT, 1982.

[KOWA74]
Kowalski, R., “Predicate Logic as a Programming Language,” Proc.
IFIP Congress, 1974, pp. 569-574.

[KOWA78]
Kowalski, R., “Logic for Data Description,” in [GM78].

[KOWAT9]
Kowalski, R., Logic for Problem Solving, Elsevier North-Holland, New
York, 1979.

482 On Conceptual Modeling

[KP76]
Kernighan, B. W., and P.J. Plauger, Software Tools, Addison-Wesley,
Reading, Mass., 1976.

[KR81]
Kung, H.T., and J. T. Robinson, ““On Optimistic Methods for Con-

currency Control,” ACM Transactions on Database Systems, Vol. 6,
No. 2, June 1981.

[KUHN67]
Kuhns, J.L., “Answering Questions by Computer—a Logical
Study,” Memorandum RM 2428 PR, Rand Corporation, Santa Mon-
ica, Calif., December 1967.

[LANDG65]
Landin, P.J., ““A Correspondence Between ALGOL 60 and Church’s
Lambda Notation,” Communications of the ACM, Vol. 8, Nos. 2 and
3, 1965.

[LANDG66]

Landin, P.J., “The Next 700 Programming Languages,” Communica-
tions of the ACM, Vol. 9, No. 3, 1966.

[LENA77]
Lenat, D.B., “The Ubiquity of Discovery,” Proc. International Joint
Conference on Artificial Intelligence, Cambridge, Mass., August 1977,

[LEVES81a]
Levesque, H., “A Formal Treatment of Incomplete Knowledge
Bases,” Ph.D. thesis, Dept. of Computer Science, Univ. of Toronto,
1981, also available as Technical Report No. 3, Fairchild Laboratory
for Artificial Intelligence Research, Palo Alto, Calif.

[LEVES1b]
Levesque, H., “The Interaction with Incomplete Knowledge Bases: a
Formal Treatment,” Proc. International Joint Conference on Artificial

Intelligence, Univ. of British Columbia, Vancouver, B.C., Canada,
1981.

[LEVIT77]

Levin, R., “Program Structures for Exceptional Condition Han-
dling,” Ph.D. thesis, Carnegie-Mellon Univ., June 1977.

[LEWI68]

Lewis, D., “Counterpart Theory and Quantified Modal Logic,” Jour-
nal of Philosophy, Vol. 65, 1968, pp. 113-126.

[LGHL78]
London, R.L., J.V. Guttag, J.J. Horning, B.W. Lampson, J.G.
Mitchell, and G.J. Popek, “Proof Rules for the Programming Lan-
guage Euclid,” Acta Informatica, Vol. 10, No. 1, 1978 pp. 1-26.

[LHLM77]
Lampson, B.W., J.J. Horning, R.L. London, J.G. Mitchell, and

G.J. Popek, “Report on the Programming Language Euclid,”
SIGPLAN Notices, Vol. 12, No. 2, February 1977, pp. 1-79.

References 483

[LIEB81a]
Lieberman, H., “A Preview of Act-1,” Al Memo No. 625, MIT
Artificial Intelligence Laboratory, 1981,

[LIEB81b]
Lieberman, H., “Thinking About Lots of Things At Once Without
Getting Confused: Parallelism in Act-1,” AI Memo No. 626, MIT
Artificial Intelligence Laboratory, 1981.

[LIPS78]
Lipski, W., Jr., “On Semantic Issues Connected with Incomplete
Information Data Bases,” PAS Report 325, Institute of Computer
Science, Warsaw, Poland, 1978.

[LIPS79]
Lipski, W., Jr., “On Semantic Issues Connected with Incomplete

Information Databases,”” ACM Transactions on Database Systems, Vol.
4, No. 3, September 1979, pp. 262-296.

[LISK77]
Liskov, B., et al., ““Abstraction Mechanisms in CLU,” Communica-
tions of the ACM, Vol. 20, No. 8, August 1977, pp. 564-576.

[LM79]
Levesque, H., and J. Mylopoulos, “A Procedural Semantics for
Semantic Networks,”” in [FIND79].

[LMW79]
Linger, R. C., H.D. Mills, and B.I. Witt, Structured Programming The-
ory and Practice, Addison-Wesley, Reading, Mass., 1979.

[LOCK79]
Lockmann, P. er al., “Data Abstractions for Data Base Systems,”’
ACM Transactions on Database Systems, Vol. 4, No. 1, March 1979.

[LOND75]
London, R.L., ““A View of Program Verification,” Proc. International
Conference on Reliable Software, IEEE Computer Society, April 1975,
pp. 534-545.

[LORI77]
Lorie, R. A., “Physical Integrity in a Large Segmented Database,”
ACM Transactions on Database Systems, Vol. 2, No. 1, March 1977.

[LS80]
Lamersdorf, W., and J.W. Schmidt, “Specification of Pascal/R,”
Report No. 73/74, Fachbereich Informatik, Univ. of Hamburg, July
1980.

[LSAS77]
Liskov B., A. Snyder, R. Atkinson, and C. Schaffert, ‘Abstraction
Mechanism in CLU,” Communications of the ACM, Vol. 20, No. 8,
August 1977, pp. 564-576.

[LW76]
Lorie, R., and B. Wade, “The Compilation of a Very High Level
Data Language,” IBM Research Report RJ2008, San Jose, Calif.,
May 1977.

484 On Conceptual Modeling

[LZ74]
Liskov, B., and S. Zilles, “‘Programming With Abstract Data Types,”
SIGPLAN Notices, Vol. 9, No. 4, April 1974, pp. 50-59.

[LZ75]
Liskov, B., and S. Zilles, “‘Specification Techniques for Data Abstrac-

tions,” IEEE Transactions on Software Engineering, Vol. SE-1, No. 1,
March 1975, pp. 7-19.

[LZ77]
Liskov, B., and S. Zilles, ““An Introduction to Formal Specifications
of Data Abstractions,” in R. Yeh (ed.), Current Trends in Program-
ming Methodology, Vol. I, Prentice-Hall, Englewood Cliffs, N.J., 1977.

[IMANN74]

Manna, Z., Mathematical Theory of Computation, McGraw-Hill, New
York, 1974.

[MBW78]
Mylopoulos, J., P. A. Bernstein, and H. K. T. Wong ‘““A Preliminary
Specification for TAXIS,” Technical Report CCA-78-02, Computer
Corporation of America, Cambridge, Mass., January 1978.

[IMBW80]
Mylopoulos, J., P. A. Bernstein, and H.K.T. Wong, “A Language
Facility for Designing Interactive Database-Intensive Applications,”
ACM Transactions on Database Systems, Vol. 5, No. 2, June 1980, pp.
185-207.

[MCALS80]
McAllester, D.A., ‘“An Outlook on Truth Maintenance,” Memo
MIT/AIM-551, MIT Laboratory for Artificial Intelligence, August
1980.

[IMCCAG62]
McCarthy, J., et «il., LISP 1.5 Programmer’s Manual, MIT Press,
Cambridge, Mass., 1962.

[MCCAS80]
McCarthy, J., “Circumscription — A Form of Non-Monotonic Rea-
soning,”” Artificial Intelligence, Vol. 13, Nos. 1 and 2, April 1980, pp.
27-39.

[MCDES0]
McDermott, D., ‘“Non-Monotonic Logic II: Non-Monotonic Modal
Theories,” Research Reort No. 174, Dept. of Computer Science,
Yale Univ., February 1980.
[MCGET6]
McGee, W.C., “On User Criteria for Data Model Evaluation,” ACM
Transactions on Database Systems, Vol. 1, No. 4, December 1976.
[MD78]

McDermott, D., and J. Doyle, ‘“Non-Monotonic Logic I,”” Memo
MIT/AIM-486, MIT Laboratory for Artificial Intelligence, 1978.

References 485

[IMENDG64]
Mendelson, E., Introduction to Mathematical Logic, Van Nostrand,
Princeton, N.J., 1964,

IMG77]
Miller, M. L., and I. Goldstein, “Problem Solving Grammars as For-
mal Tools for Intelligent CAIL” Proc. ACM, 1977.

[MH69]
McCarthy, J., and P. Hayes, “Some Philosophical Problems from the
Standpoint of Artificial Intelligence,” in D. Michie and B. Meltzer
(eds.), Machine Intelligence 4, Edinburgh Univ. Press, Edinburgh,
Scotland, 1969.

IMILL76]
Millen, J. K., “Security Kernel Validation in Practice,” Communica-
tions of the ACM, Vol. 19, No. 5, May 1976, pp. 243-250.

[MILL79]
Miller, E. (ed.), Tutorial: Automated Tools Jor Software Engineering,
IEEE Computer Society, IEEE Catalog No. EHO 150-3, 1979.

[MILN78]
Milner, R., “A Theory of Type Polymorphism in Programming,”’
Journal of Computer and System Sciences, Vol. 17, 1978, pp. 348-375.

[MINS75]
Minsky, M., “A Framework for Representing Knowledge,” in P.
Winston (ed.), The Psychology of Computer Vision, McGraw-Hill, New
York, 1975, pp. 211-277.

[MISR78]
Misra, J., “Some Aspects of the Verification of Loop Computa-

tions,” IEEE Transactions on Software Engineering, Vol. SE-4, No. 6,
November 1978, pp. 478-485.

[MN74]
Moore, J. and A. Newell, “How can MERLIN Understand?,” in L.

Gregg (ed.), Knowledge and Cognition, Lawrence Erlbaum Associates,
Hillsdale, N.J., 1974,

IMONT74]
Montague, R., “The Proper Treatment of Quantification in Ordinary
English,” in R. Thomason (ed.), Formal Philosophy, Yale Univ.
Press, New Haven, 1974, pp. 247-270.

[IMOOR77]
Moore, R., “Reasoning About Knowledge and Action,” Proc. 5th

International Joint Conference on Artificial Intelligence, Cambridge,
Mass., August 1977.

[IMOORS81]
Moore, R., “Reasoning about Knowledge and Action,” Technical

Note 191, Artificial Intelligence Center, SRI International, Menlo
Park, 1980.

486 On Conceptual Modeling

[MOOR382]
Moore, R.C., “The Role of Logic in Knowledge Representation and
Commonsense Reasoning,” Proc. AAAI National Conference, Pitts-
burgh, Penn., August 1982.

[MORR73al
Morris, J.H., “Types Are Not Sets,”” Proc. ACM Symposium on Prin-
ciples of Programming Languages, 1973, pp. 120-124.

[MORR73b]
Morris, J. H., “Protection in Programming Languages,” Communica-
tions of the ACM, Vol. 16, January 1973, pp. 15-21.

[MP82]
Manola, F., and A. Pirotte, “CQLF—A Query Language for
CODASYL-Type Databases,” Proc. 1982 ACM SIGMOD Interna-
tional Conference on the Management of Data, Orlando, Fla., 1982.

[MPBR82]
Manola, F., A. Pirotte, B. Blaustein, and D.R. Ries, “Family of
Data Model Specifications for DBMS (Database Management Sys-
tem) Standards,” Computer Corporation of America, Cambridge,
Mass., December 1982; NBS-GCR-82-419, available as NTIS Report
PB83-163394.

[MS73]
McDermott, D., and G.J. Sussman, “The Conniver Reference Man-
ual,” Memo MIT/AIM-259A, MIT Laboratory for Artificial Intelli-
gence, 1973.

[Mss81]
McLeod, D., and J. M. Smith, « Abstraction in Databases,” in [BZ81].

[MSHI78]
McCarthy, J., M. Sato, T. Hayashi, and S. Igarashi, “On the Model
Theory of Knowledge,” Memo AIM-312, Dept. of Computer Sci-
ence, Stanford Univ., 1978.

[MW80]
Mylopoulos, J., and H. Wong, “gome Features of the TAXIS Data

Model,”” Proc. 6th International Conference on Very Large Databases,
Montreal, Que., Canada, October 1980.

[MYERS1]
Myers, T.J., Ph.D. Dissertation, Univ. of Pennsylvania, 1981.
[MYLOS81]
Mylopoulos, J., “An Overview of Knowledge Representation,” in
[BZ81].
[NEWEG62]
Newell, A., “Some Problems of Basic Organization in Problem-

Solving Programs,” Memorandum RM-3283-PR, Rand Corporation,
Santa Monica, Calif., December 1962.

References 487

[NEWES0]

Newell, A., “Physical Symbol Systems,” Cognitive Science, Vol. 4,
No. 2, April-June 1980, pp. 135-183.

[NEWES1]
Newell, A., “The Knowledge Level,” Proc. AAAI National

Conference, (presidential address) Stanford, Calif.; reprinted in A7
Magazine, Vol. 2, No. 2, 1981.

ING78]
Nicolas, J.M., and H. Gallaire, “Data Base: Theory vs. Interpreta-
tion,” in [GM78].

[NILS71]

Nilsson, N., Problem Solving Methods in Artificial Intelligence,
McGraw-Hill, Englewood Cliffs, N.J., 1971.

[NR69]
Naur, P., and B. Randell (eds.), Sofiware Engineering, NATO, 1969
(report on a conference sponsored by the NATO Science Committee,
Garmisch, West Germany, October 7-11, 1968).

[NS78]
Navathe, S.B., and M. Schkolnick, “View Representation in Logical
Database Design,” Proc. 1978 ACM SIGMOD International

Conference on the Management of Data, Austin, Texas, May-June
1978.

[INY78]
Nicolas, J. M., and K. Yazdanian, “Integrity Checking in Deductive
Databases,” in [GM78].

[ONG82]
Ong, J., “Specification of an ADT Facility for a Relational Data Base

System,” Masters Report, Univ. of California, Berkeley, September
1982.

[ORGA7T6]

Organick, E. 1. (chrm.), Proc. of Conference on Data: Abstraction, Defi-
nition, and Structure, SIGPLAN Notices, Vol. 11, No. 2, 1976.

[OSV82]
Olle, T.W., H.G. Sol, and A.A. Verjn-Stuart, Information Systems
Design Methodologies: A Comparative Review (Proc. IFIP TC 8
Working Conference on Comparative Review of Information Systems
Design Methodologies, Noordwijkerhout, Netherlands, May 1982),
Elsevier North-Holland, Amsterdam, The Netherlands, 1982.

[OVERS81]
Overmeyer, R., ““A Time Expert for INGRES,” M.S. thesis, Univ. of
California, Berkeley, August 1981.

[PARN71])

Parnas, D.L., “Information Distribution Aspects of Design Method-
ology,” Proc. of IFIP Congress, Booklet TA-3, 1971, pp. 26-30.

488 On Conceptual Modeling

[PARN72a]
Parnas, D.L., “A Technique for Software Module Specification with
Examples,” Communications of the ACM, Vol. 15, May 1972, pp.
330-336.

[PARN72b]
Parnas, D.L., “On the Criteria to be Used in Decomposing Systems
into Modules,” Communications of the ACM, Vol. 15, No. 12,
December 1972.

[PETES0]
Peters, L., “Software Design Engineering,” Proc. IEEE, Vol. 68, No.
9, September 1980.

[POPL73]
Pople, H.E., “On the Mechanization of Abductive Logic,” Proc.
International Joint Conference on Artificial Intelligence, Palo Alto,
Calif., August 1973.

[POWES2]
Powell, M., private communication.

[QUIL68]
Quillian, M. R. “‘Semantic Memory,” in M. Minsky (ed.), Semantic
Information Processing, MIT Press, 1968.

[RAMS79]
Ramshaw, L.H., “Formalizing the Analysis of Algorithms,”” Ph.D.
thesis, Stanford Univ., 1979.

[RAPH71]
Raphael, B., “The Frame Problem in Problem-Solving systems,” in
N. V. Findler and B. Meltzer (eds.), Artificial Intelligence and Heuristic
Programming, Edinburgh Univ. Press, Edinburgh, Scotland, 1971.

[RB82a]
Ridjanovic, D., and M.L. Brodie, ‘“Semantic Data Model-Driven
Design, Specification and Verification of Interactive Database Trans-
actions,” Computer Corporation of America, Cambridge, Mass.,
April 1982.

[RB82b]
Ridjanovic, D., and M.L. Brodie, “Defining Database Dynamics

with Attribute Grammars,” Information Processing Letters, Vol. 14,
No. 3, May 1982.

[RB82c¢]
Ridjanovic, D., and M. L. Brodie, ‘“Definition of Fundamental Con-
cepts and Tools for Semantic Modelling of Data and Associated
Operations,’” submitted for publication.

[RB82d]

Ridjanovic, D., and M.L. Brodie, ‘“Disciplined Methodology for
Database Transaction Design,” submitted for publication.

References 489

[RB82¢e]
Ridjanovic, D., and M.L. Brodie, ‘“Functional Specification and
Implementation Verification of Database Transactions,” submitted
for publication.

[RB82f]
Ridjanovic, D., and M. L. Brodie, “Conceptual Modelling of Office
Procedures,” submitted for publication.

[RB83]
Ridjanovic, D., and M.L. Brodie, ‘“Action and Transaction
Skeletons: High Level Language Constructs for Database Transac-
tions,” Proc. 1983 SIGPLAN Conference, San Francisco, Calif., June
1983.

[REIT77]
Reiter, R., An Approach to Deductive Question-Answering, BBN
Technical Report 3649, Bolt, Beranek and Newman, Inc., Cam-
bridge, Mass., September 1977.

[REIT78a]
Reiter, R., “Deductive Question-Answering on Relational
Databases,” in [GM78], pp. 149-177.

[REIT78b]
Reiter, R., ““On Closed World Data Bases,” in [GM78], pp. 55-76.

[REIT78c]
Reiter, R., “On Reasoning by Default,”” Proc. Second TINLAP
Conference, Urbana, Ill., July 1978, pp. 210-218.

[REIT80a]

Reiter, R., “Equality and Domain Closure in First Order Databases,”
Journal of the ACM, Vol. 27, No. 2, 1980, pp. 235-249.

[REIT80b]
Reiter, R., “Databases: A Logical Perspective,” in [BZ80], pp. 174-
176.

[REIT80c]
Reiter, R., “A Logic for Default Reasoning,” Artificial Intelligence,
Vol. 13, 1980, pp. 81-132.

[REITS1]
Reiter, R., “On Interacting Defaults,” Proc. International Joint
Conference on Artificial Intelligence, Vancouver, B.C., Canada, 1981.

[REIT82]
Reiter, R., “Circumscription Implies Predicate Completion (Some-
times),” Proc. AAAI National Conference, Pittsburgh, Penn., August
1982.

[REYN79]

Reynolds, J.C., “Reasoning About Arrays,” Communications of the
ACM, Vol. 22, No. 5, May 1979, pp. 290-298.

490 On Conceptual Modeling

[RICHS0]

Rich, C., “Inspection Methods in Programming,” Ph.D. thesis
(Technical Report MIT/AI/TR-604), MIT Laboratory for Artificial
Intelligence, December 1980.

[RICHS1]

Rich, C., “Multiple Points of View in Modeling Programs,” Proc.
Workshop on Data Abstraction, Data Bases and Conceptual Modeling,
SIGPLAN Notices, Vol. 16, No. 1, January 1981, pp. 177-179.

[RICHS82]

Rich, C., “Knowledge Representation Languages and Predicate Cal-
culus: How to Have Your Cake and Eat it Too,” Proc. AAAI National
Conference, Pittsburgh, Penn., August 1982.

[ROSC75]

- Rosch, E., “Cognitive Representations of Semantic Categories,”
Journal of Experimental Psychology: General, Vol. 104, 1975, pp. 192-
233.

[ROSS77]

Ross, D.T., “Structured Analysis (SA): A Language for Communi-
cating Ideas,” IEEE Transactions on Software Engineering, Vol. SE-3,
No. 1, January 1977.

[ROSS82]

Rosser, B.J., “Highlights of the History of the Lambda-Calculus,”
Conference Record ACM Symposium on Lisp and Functional Program-
ming, Plymouth, Mass., August 1982.

[ROUS77]

Roussopoulos, N., “ADD: Algebraic Data Definition,” Proc. 6th
Texas Conference on Computing Systems, Austin, Texas, November
1977.

[ROUT79]

Routley, R., unpublished manuscript, 1980.
[ROWES2]

Rowe, L.A., et al, “A Form Application Development System,”
Proc. 1982 ACM SIGMOD International Conference on the Manage-
ment of Data, Orlando, Fla., June 1982.

[RS76]

Rich, C., and H.E. Shrobe, “Initial Report On A LISP

Programmer’s Apprentice,” M.S. thesis (Technical Report MIT/Al/

TR-354), MIT Laboratory for Artificial Intelligence, December 1976.
[RS79]

Rowe, L. A., and K A. Schoens, “‘Data Abstraction, Views and
Updates in RIGEL,” Proc. 1979 ACM SIGMOD International
Conference on the Management of Data, Boston, Mass., May 1979, pp.

71-81.
[RS81]

Reimer, M., and J. W. Schmidt, “Transaction Procedures with Rela-

tional Parameters,” Report No. 45, Institut fuer Informatik, ETH
Zurich, October 1981.

References 491

[RSW79]
Rich, C., H.E. Shrobe, and R.C. Waters, ‘““An Overview of the
Programmer’s Apprentice,” Proc. 6th International Joint Conference on
Artificial Intelligence, Tokyo, Japan, August 1979,

[RSWS78]
Rich, C., H.E. Shrobe, R.C. Waters, G.J. Sussman, and C.E.
Hewitt, “Programming Viewed as an Engineering Activity,” NSF
Proposal, (Memo MIT/AIM-459), MIT Laboratory for Artificial
Intelligence, January 1978.

[RUTH73]

Ruth, G., “Analysis of Algorithm Implementations,” Ph.D. thesis
(MIT Project MAC Technical Report 130), 1973.

[SACE74]
Sacerdoti, E.D., “Planning in a Hierarchy of Abstraction Spaces,”’
Artificial Intelligence, Vol. 5, No. 2, 1974, pp. 115-135.

[sC75]
Smith, J.M., and P.Y. Chang, “Optimizing the Performance of a

Relational Algebra Database Interface,” Communications of the ACM,
Vol. 18, No. 10, 1975.

[SCHM77]
Schmidt, J.W., “Some High Level Language Constructs for Data of
Type Relation,” ACM Transactions on Database Systems, Vol. 2, No.
3, September 1977.

[SCHM78]
Schmidt, J.W., “Type Concepts for Database Definition,” Proc.
International Conference on Data Bases, Haifa, Israel, August 1978.

[SCHMS82]
Schmidt, J.W., “Generalized Data Definition and Selection Mecha-
nisms,”” Fachbereich Informatik, Univ. of Hamburg, 1982 (to
appear).

[SCHU71]
Schuman, S.A. (ed.), Proc. International Symposium on Extensible
Languages, SIGPLAN Notices, Vol. 6, No. 12, December 1971.

[SCHU76al
Schubert, L.K., “Extending the Expressive Power of Semantic Net-
works,” Artificial Intelligence, Vol. 7, No. 2, Summer 1976, pp. 163-
198.

[SCHU76b]
Schuman, S. A., “On Generic Functions,” in S. A. Schuman (ed.),

New Directions in Algorithmic Languages— 1975, IRIA, Le Chesnay,
France, 1976, pp. 169-192.

[SCHW75]
Schwartz, J.T., “On Programming,” Interim Report on the SETL

Project, Courant Institute of Mathematical Sciences, New York
Univ., June 1975.

492 On Conceptual Modeling

[scoT172]
Scott, D.S., “Lattice Theoretic Models for Various Type-free Cal-
culi,” Proc. 4th International Congress on Logic, Methodology and the
Philosophy of Science, Bucharest, Hungary, 1972,

ISE74]
Stonebraker, M., and E. Wong, “Access Control in a Relational Datg
Base System by Query Modification,” Proc. ACM Annual Conférence,
San Diego, Calif., November 1974.

[SFFH78]
Shaw, M., G. Feldman, R. Fitzgerald, P. Hilfinger, [. Kimura, R.
London, J. Rosenberg, and W.A. Wulf, ““Validating the Utility of
Abstraction Techniques,” Proc. ACM National Conference, December
1978, pp. 106-110.

[SFL81]
Smith, J.M., S. Fox, and T. Landers, ‘“Reference Manual for
ADAPLEX,” Technical Report CCA-81-02, Computer Corporation
of America, Cambridge, Mass., 1981.

[SGC79]
Schubert, L.K., R.G. Goebel, and N.J. Cercone, “The Structure
and Organization of a Semantic Net for Comprehension and
Inference,” in [FIND79], pp. 121-175.

[SHAP79]
Shapiro, S., “The SNePs Semantic Network Processing System,”” in
[FIND79].

[SHAWT9]
Shaw, M., ““A Formal System for Specifying and Verifying Program
Performance,”” Technical Report CMU-CS-79-129, Carnegie-Mellon
Univ., June 1979.

[SHIP81]
Shipman, D.W., “The Functional Data Model and the Data Lan-
guage DAPLEX,” ACM Transactions on Database Systems, Vol. 6,
No. 1, March 1981.

[SHM77]
Szolovits, P., L. Hawkinson, and W.A. Martin, ‘“An Overview of
OWL, A Language for Knowledge Representation,”” Technical Memo
MIT/LCS/TM-86, MIT Laboratory for Computer Science, 1977.

[SHRO79]
Shrobe, H.E., “Dependency Directed Reasoning for Complex Pro-
gram Understanding,” Ph.D. thesis (Technical Report MIT/AI/TR-
503), MIT Laboratory for Artificial Intelligence, April 1979.

[SK77]
Sibley, E.H., and L. Kershberg, ‘‘Data Architecture and Data Model

Considerations,” Proc. AFIPS National Computer Conference, Dallas,
Texas, 1977.

References 493

[SK80a]
Silberschatz, A., and Z. Kedem, “Consistency in Hierarchical Data-
base Systems,” Journal of the ACM, Vol. 27, No. 1, January 1980.

[SK80b]
Stonebraker, M., and K. Keller, “Embedding Hypothetical Data
Bases and Expert Knowledge in a Data Manager,” Proc. 1980 ACM
SIGMOD International Conference on the Management of Data, Santa
Monica, Calif., May 1980.

[SL79]
Su, 8.Y.W., and D. H. Lo, “A Semantic Association Model for Con-
ceptual Database Design,” Proc. International Conference on the

Entity-Relationship Approach to Systems Analysis and Design, Los
Angeles, Calif., December 1979.

[SM72]
Sussman, G.J., and D. McDermott, “Why Conniving is Better Than
Planning,” Memo MIT/AIM-255A, MIT Laboratory for Artificial
Intelligence, 1972.

[SM80]
Schmidt, J.W., and M. Mall, “Pascal/R Report,”” Report No. 66,
Fachbereich Informatik, Univ. of Hamburg, January 1980.

[SMIT82]
Smith, B. C., “Reflection and Semantics in a Procedural Language,”
Technical Report MIT/LCS/TR-272, MIT Laboratory for Computer
Science, May 1982.

[SOWAT6]
Sowa, J.F., “Conceptual Structures for a Database Interface,” IBM
Journal of Research and Development, Vol. 20, No. 4, July 1976, pp.
336-357.

[$$75]
Schmid, H. A., and J.R. Swenson, “On the Semantics of the Rela-
tional Data Model,” Proc. 1975 ACM SIGMOD International
Conference on the Management of Data, San Jose, Calif., June 1975.

[SS77al
Smith, J.M., and D.C.P. Smith, “Database Abstractions: Aggrega-
tion,” Communications of the ACM, Vol. 20, No. 6, June 1977.

[SS77b]
Smith, J.M., and D.C.P. Smith, “Database Abstractions: Aggrega-
tion and Generalization,” ACM Transactions on Database Systems,
Vol. 2, No. 2, June 1977, pp. 105-133

[sS78a]
Smith, J. M., and D.C.P. Smith, “Principles of Conceptual Database

Design,” Proc. NYU Symposium on Database Design, New York, May
1978.

[$S78b]
Steele, G. L., Jr., and G.J. Sussman, “The Art of the Interpreter, or,

The Modularity Complex (Parts Zero, One, and Two),” Memo
MIT/AIM-453, MIT Laboratory for Artificial Intelligence, May 1978.

494 On Conceptual Modeling

[sS78¢]
Steele, G.L., Jr., G.J. Sussman, ““The Revised Report on SCHEME:
A Dialect of LISP,” Memo MIT/AIM-452, MIT Laboratory for Arti-
ficial Intelligence, January 1978.

[SS79]
Smith, J. M., and D.C.P. Smith, ‘“A Database Approach to Software
Specification,” Technical Report CCA-79-17, Computer Corporation
of America, Cambridge, Mass., April 1979.

[STANG67]
Standish, T. A., “A Data Definition Facility for Programming Lan-

guages,” Ph.D. thesis, Dept. of Computer Science, Carnegie-Mellon
Univ., 1967.

[STEE78]
Steele, G.L., “Rabbit: A Compiler for Scheme (A Study in Compiler
Optimization),” Technical Report MIT/AI/TR-474, MIT Laboratory
for Artificial Intelligence, May 1978.

[STON75]
Stonebraker, M., ‘“Implementation of Integrity Constraints and
Views by Query Modification,” Proc. 1975 ACM SIGMOD Interna-
tional Conference on the Management of Data, San Jose, Calif., June
1975.

[STON76]
Stonebraker, M., et al., “The Design and Implementation of
INGRES,” ACM Transactions on Database Systems, Vol. 2, No. 3,
September 1976.

[STONS8O]
Stonebraker, M., ‘‘Retrospection on a Database System,” ACM

Transactions on Database Systems, Vol. S, No. 2, June 1980, pp. 225-
240.

[STONS2a]
Stonebraker, M., et al.,, “Document Processing in a Relational Data-
base System,” Report M82/20, Electronic Research Laboratory,
Univ. of California, Berkeley, June 1982.

[STON82b]
Stonebraker, M., er al., ““A Rules System for a Relational Database

System,”” Proc. 2nd International Conference on Databases, Jerusalem,
Israel, June 1982.

[SUNA78]
Sunagren, B., “Database Design in Theory and Practice,”” Proc. 4th

International Conference on Very Large Databases, West Berlin, Sep-
tember 1978.

[Suss75]

Sussman, G.J., 4 Computer Model of Skill Acquisition, MIT Press,
1975.

References 495

[SUSS78]
Sussman, G.J., “Slices at the Boundary Between Analysis and Syn-
thesis,” in J.-C. Latombe (ed.), Artificial Intelligence and Pattern Rec-

ognition in Computer Aided Design, Elsevier North-Holland, New
York, 1978.

[SW80]
Shaw, M., and W.A. Wulf, “Toward Relaxing Assumptions in Lan-
guages and Their Implementations,” SIGPLAN Notices, Vol. 15, No.
3, March 1980, pp. 45-61.

[swg2]
Schneider, H.-S., and A.l. Wasserman, Automated Tools Jor
Information Systems Design (Proc. IFIP WG 8.1 Working Conference
on Automated Tools for Information Systems Design and Develop-
ment, New Orleans, La., January 1982), Elsevier North-Holland,
New York, 1982.

[SwC70]
Sussman, G.J., T. Winograd, and E. Charniak, “MICRO-PLANNER
Reference Manual,” Memo MIT/AIM-203, MIT Laboratory for Arti-
ficial Intelligence, 1970.

[SWL77]
Shaw, M., W. A. Wulf, and R.L. London, “Abstraction and Verifica-
tion in Alphard: Defining and Specifying Iteration and Generators,”
Communications of the ACM, Vol. 20, No. 8, August 1977,

[TARKS6]

Tarski, A., Logic, Semantics, Metamathematics, Oxford Univ. Press,
1956.

[TF76]
Taylor, D.C., and R.L. Frank, “CODASYL Database Management
Systems,” Computing Surveys, Vol. 8, No. 1, March 1976.

[TF80]
Teorey, T.J., and J.P. Fry, “The Logical Record Access Approach to
Database Design,” Computing Surveys, Vol. 12, No. 2, June 1980.

[TH77]
Teichroew, D., and E. A. Hershey, “PSA/PSL: A Computer-Aided
Technique for Structured Documentation and Analysis of
Information Processing Systems,” IEEE Transactions on Software
Engineering, Vol. SE-3, No. 1, January 1977.

[THERS82]
Theriault, D., “A Primer for the Act-1 Language,” Memo MIT/
AIM-672, MIT Laboratory for Artificial Intelligence, April 1982.

[TK78]
Tsichritzis, D., and A. Klug, “The ANSI/X3/SPARC DBMS Frame-
work,”” Information Systems, Vol. 3, No. 4, 1978.

[TL76]
Tsichritzis, D., and F. Lochovsky, ‘“Hierarchical Database Manage-
ment: A Survey,” Computing Surveys, Vol 8, No. 1, March 1976.

496 On Conceptual Modeling

[TL82]
Tsichritzis, D., and F. Lochovsky, Data Models, Prentice-Hall, Engle-
wood Cliffs, N.J., 1982.

[TSIC82]

Tsichritzis, D., “Form Management,”” Communications of the ACM,
Vol. 25, No. 7, July 1982.

[TURI37]
Turing, A.M., “Computability and Lambda-Definability,” Journal of
Symbolic Logic, Vol. 2, 1937, pp. 153-163.

[TURN79]
Turner, D. A., “A New Implementation Technique for Applicative
Languages,” Software-—-—Practrce & Experience, Vol. 9, No.1, 1979.

[TURNS1a}
Turner, D. A., “The Semantic Elegance of Applicative Languages,”

Proc. ACM Conference on Functional Programming and Archictecture,
New Hampshire, 1981.

[TURNS1b]
Turner, R., “Montague Semantics, Nominalization, and Scott’s
Domains,”” unpublished manuscript, 1981.

[TWW78]
Thatcher, J. W., E.G. Wagner, and J. B. Wright, “Data Type Spec1f1-
cations: Parameterlzatlon and Power of Specification Techniques,”
Proc. SIGACT 10th Symposium on Theory of Computing, May 1978, pp.
119-132.

[ULLMS80]
Ullman, J.D., Principles of Database Systems, Computer Science
Press, Potomac, Maryland, 1980.

[VASS79]
Vassiliou, Y., “Null Values in Database Management. A
Denotatlonal Semantics Approach,” Proc. 1979 ACM SIGMOD Inter-

national Conference on Management of Data, Boston, Mass., May
1979, pp. 162-169.

[VASS80]
Vassiliou, Y., “A Formal Treatment of Imperfect Information in

Database Management ” Ph.D. thesis, Dept. of Computer Science,
Univ. of Toronto, 1980.

[VMPK75]
Van Wijngaarden, A., B.J. Maiuoux, J.E.L. Peck, C.H. A. Koster,
C.M. Sintzoff, C. H. Llndsay, L.G.L.T. Meertens, and R. G. Fisker,
“Revised Report on the Algorithmic Language Algol 68,” Acta
Informatica, Vol. 5, 1975, pp 1-236.

[WALDS81]
Wadler, P., “Applicative Style = Programming, Program

Transformation and List Operators,” Proc. ACM Conference on Func-
tional Programming and Architecture, New Hampshire, 1981.

References 497

[WALKS80]
Walker, A., “Time and Space in a Lattice of Universal Relations with
Blank Entries,” XPI Workshop on Relational Database Theory, Stony
Brook, N.Y., June-July 1980.

[WASS77]
Wasserman, A.I., “Procedure-Oriented Exception-Handling,”
Technical Report 27, Medical Information Science, Univ. of
California, San Francisco, February 1977.

[WASS79]
Wasserman, A.l., “The Data Management Facilities of PLAIN,”
Proc. 1979 ACM SIGMOD International Conference on the Manage-
ment of Data, Boston, Mass., May 1979.

[WATE78]
Waters, R.C., “Automatic Analysis of the Logical Structure of Pro-
grams,” Ph.D. thesis (Technical Report MIT/ AI/TR-492), MIT Lab-
oratory for Artificial Intelligence, December 1978.

[WATE79]
Waters, R.C., “A Method for Analyzing Loop Programs,” [EEE

Transactions on Software Engineering, Vol. SE-5, No. 3, May 1979, pp.
237-247.

[WATES1]
Waters, R.C., “The Programmer’s Apprentice: Knowledge Based

Program Editing,” IEEE Transactions on Software Engineering, Vol.
SE-8, No. 1, January 1982.

[WB81]
Wirsing, M., and M. Broy, ‘“An Analysis of Semantic Models for
Algebraic Specifications,” International Summer School on the Theoret-
ical Foundations of Programming Methodology, Marktoberdorf, 1981.

[WE79]
Wiederhold, G., and R. El-Masri, “The Structural Model for Data-
base -Design,” Proc. International Conference on the Entity-Relationship

Approach to Systems Analysis and Design, Los Angeles, Calif., Decem-
ber 1979.

[WEYHS80]
Weyhrauch, R. W., “Prolegomena to a Theory of Mechanized For-

mal Reasoning,” Artificial Intelligence, Vol. 13, Nos. 1 and 2, April
1980, pp. 133-170.

[WH78]
Waterman, D.A., and F. Hayes-Roth (eds.), Pattern-Directed
Inference Systems, Academic Press, New York, 1978.

[WILS75]
Wilson, M. L., “The Information Automata Approach to Design and
Implementation of Computer-Based Systems,” Technical Report
FSD76-0093, IBM Federal Systems Division, Gaithersburg, Md.,
1975.

498 On Conceptual Modeling

[WINO72]

Winograd, T., Understanding Natural Language, Academic Press, New
York, 1972.

[WINO73]
Winograd, T., “Breaking the Complexity Barrier (Again),” Proc.
SIGIR-SIGPLAN Interface Meeting, November 1973.

[WINO75]
Winograd, T., ‘“Frame Representation and the Declarative-
Procedural Controversy,”’ in [BC75].

[WIRS82]
Wirsing, M., “Structured Algebraic Specifications,” Proc. AFCET
Symposium for Computer Science, Paris, France, March 1982.

[WIRT71]

Wirth, N., “Program Development by Stepwise Refinement,” Com-
munications of the ACM, Vol. 14, No. 4, April 1971, pp. 221-227.

[WIRT73]

Wirth, N., Systematic Programming, An Introduction, Prentice-Hall,
Englewood Cliffs, N.J., 1973.

[WIRT77]
Wirth, N., “Modula: A Language for Modular Programming,”

Software — Practice & Experience, Vol. 7, No. 1, January 1977, pp. 3-
35.

[WKP30]
Walker, B.J., R. A. Kemmerer, and G.J. Popek, “Specification and
Verificaton of the UCLA Security Kernel,” Communications of the
ACM, Vol. 23, No. 2, February 1980, pp. 118-131.

[WLGL78]
Wensley, J.H., L. Lamport, M.W. Green, K.N. Levitt, P.M.
Melliar-Smith, R.E. Shostak, and C.B. Weinstock, “SIFT: Design
and Analysis of a Fault-Tolerant Computer for Aircraft Control,”
Proc. IEEE, Vol. 66, No. 10, October 1978, pp. 1240-1255.

[WLS76]
Wulf, W. A., R.L. London, and M. Shaw, ““An Introduction to the
Construction and Verification of Alphard Programs,” [EEE Transac-
tions on Software Engineering, Vol. SE-2, No. 4, December 1976, pp.
253-265.

[WM77]
Wong, H.K.T., and J. Mylopoulos, “Two Views of Data Semantics:

Data Models in Artificial Intelligence and Database Management,”
INFOR, Vol. 15, No. 3, 1977.

[WM81]
Weinreb, D., and D. Moon, “LISP Machine Manual,” MIT Labora-
tory for Artificial Intelligence, March 1981.

References 499

[WONGS81]
Wong, H.K.T., “Design and Verification of Interactive Information
Systems Using TAXIS,” Technical Report CSRG-129, CSRG, Univ.
of Toronto, April 1981.

[WOOD75]
Woods, W.A., “What’s in a Link: Foundations for Semantic Net-
works,”” in [BC75], pp. 35-82

[WPPD83]
Wirsing, M., P. Pepper, H. Partsch, W. Dosch, and M. Broy, “On
Hierarchies of Abstract Data Types,” Acta [nformatica, 1983 (to
appear).

[WS73]
Wulf, W. A., and M. Shaw, “Global Variables Considered Harmful,”
SIGPLAN Notices, Vol. 8, No. 2, February 1973, pp. 28-34.

[WSH77]
Welsh, J., M.J. Sneeringer, and C. A.R. Hoare, ‘“Ambiguities and
Insecurities in PASCAL,” Software — Practice & Experience, Vol. 7,
No. 6, 1977, pp. 685-696.

[WSHF81]
Wulf, W.A., M. Shaw, P.N. Hilfinger, and L. Flon, Fundamental

Structures of Computer Science, Addison-Wesley, Reading, Mass.,
1981.

[YANNS2]
Yannakakis, M., ‘““A Theory of Safe Locking Policies in Database
Systems,”” Journal of the ACM, Vol. 29, No. 3, July 1982.

[YZ80]

Yeh, R.T., and P. Zave, “Specifying Software Requirements,” Proc.
[EFEFE, Vol. 68, No. 9, September 1980.

[ZANI77]
Zaniolo, C., “‘Relational Views in a Database System; Support for

Queries,” Proc. IEEE Computer Applications and Software Conference,
Chicago, Ill., November 1977, pp. 267-275.

[ZILL8O]
Zilles, S.N., “An Introduction to Data Algebras,” in D. Bjoerner
(ed.), Abstract Software Specifications, Lecture Notes in Computer Sci-
ence, No. 86, Springer-Verlag, New York, 1980, pp. 248-272.
[ZISM78]
Zisman, M., “Use of Production Systems for Modelling Asynchro-
nous Parallel Processes,” in [WH78].
[ZLT82]

Zilles, S.N., P. Lucas, and J. W. Thatcher, “A Look at Algebraic
Specification,” submitted for publication.

