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ABSTRACT This paper describes a software specification methodol-
0gy based on the notion of concept specialization. The methodology,
which is particularly useful for Information Systems, applies uniformly to
the various components of such systems, such as data classes, transac-
tions, exceptions, and user interfaces (scripts), and its goal is the sys-
tematic and structured description of highly detailed world models, where
concepts occur in many variations. An example from the domain of
university information systems is used to illustrate and motivate the
approach.

1. Introduction

Complaints about the high cost of software development and mainte-
nance are now commonplace. Research in Programming Languages,
Software Engineering, and Database Management attempts to deal with
this problem by proposing tools and techniques for managing the ever
increasing complexity of software. Many of these techniques are based
on abstraction mechanisms that advocate the development of software in
a stepwise fashion, each step involving only some of the details of the
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whole problem while others, hopefully the less relevant ones, are
suppressed until some later step.

For example, some current methodologies advocate the creation of a
sequence of models ranging from the initial “‘real-world problem to the
final machine-executable program. This abstraction, called Representa-
tion in [SS79], involves implementation details and is supported by a
number of languages and methodologies (e.g., [PARN72] and [WLS76],
among others). A second abstraction that has been advocated involves
grouping a collection of units into a new conceptual unit (4ggregation).
Software development through stepwise refinement [WIRT71] is based
on this abstraction and offers decomposition as a methodological tool
for building complex systems. This chapter focuses on conceptual mod-
elling, i.e., the specification of models that are closer to the human’s
conception of reality than to the machine’s representation, and pro-
poses a stepwise methodology based on concept specialization. In this
case, the abstraction involves factoring out the commonalities in the
description of several concepts into the description of a more general
concept, and the refinement process reintroduces these details by speci-
fying the ways in which a more specialized concept differs from the
more general one. This methodology, which we call taxonomic specifica-
tion, is complementary to stepwise refinement and methodologies based
on Representation, and we feel that it is particularly appropriate when
there are a large number of relatively simple, but interrelated, facts to
be captured.

Section 2 elaborates on the notions of ‘“model” and ‘‘abstraction,”
and Section 3 discusses Generalization as an abstraction mechanism and
compares our version to others that have been proposed in the litera-
ture. In Section 4 we present a long example using a language along
the lines of TAXIS? [MBW80] [WONGS81] to illustrate the nature and the
virtues of taxonomic specification. Section 5 sketches scripts that facili-
tate the description of the user dialogues that need to be supported by
the system under design, and Section 6 discusses exceptions and an
exception-handling mechanism that can be used as a tool in cases of
over-abstraction. Finally, Section 7 presents conclusions and directions
for further research.

1 The term ‘‘abstraction” is used here in a more general sense than usual in the field of
Programming Languages, where its meaning is usually that of “‘representation abstrac-
tion,” as that notion is defined below.

2 TAXIS is a programming language for the design of interactive information systems,

such as on-line inventory control and airline reservations, which supports taxonomic
programming and offers many of the features discussed in the rest of the chapter.
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2. Models and Abstractions

The observation that a computer system constitutes a model of a
“world” or “‘slice of reality” about which it contains information has
been made repeatedly in the literature (e.g., [ABRI74] [BC75] [WILS75]),
and is most obvious in the case of information systems. This observa-
tion motivates our first axiom: in a substantial number of cases, the
process of software specification can be viewed as the process of build-
ing an accurate model of some enterprise. In order to facilitate the task
of the modeler, as well as communication with the eventual users, we
also assume that these models should reflect naturally and directly the
users’ conceptualization of the universe of discourse.

Unfortunately, the term ‘model” has several different technical
meanings and it seems appropriate to contrast them with the sense used
in this chapter.

The term receives its most precise and technical sense in the field of
mathematical logic where, given a set of axioms and their deductive
consequences, one interprets them in terms of a “model” (i.e., a set of
mathematical entities and relations which satisfy the axioms). This
notion underlies in one way or another all other uses of the term, but
in this technical sense its use is restricted to the theory of mathematical
logic.

Two other uses of the term, namely as an analogue device (e.g., a
wind-tunnel model of an airplane) and as a mathematical model (e.g.,
Maxwell’s equations as a model of electricity) are common in science
and engineering, but they are quite distinct from the term as used in
this chapter.

From the cognitive sciences we obtain the notion of “‘conceptual
model,” which is much closer to what we want. Such a model consists
of a number of symbol structures and symbol structure manipulators
which, according to a rather naive mentalistic philosophy, are supposed
to correspond to the conceptualizations of the world by human obser-
vers. This view appears to underlie work on ‘“‘semantic data models”
(e.g., survey in [BORGS82b]) and ‘knowledge representation” (e.g.,
overviews in [BD81] and [MYLOS81]).

Another sense of the term ‘“model” is current in the area of Data
Base Management Systems under the guise of ‘“‘data model.” A data
model (see [TL82] for example) specifies the rules according to which
data are structured and what associated operations are permitted on
them. The traditional data models underlying commercial Database
Management Systems consider as data only strings and numbers, and
they are concerned primarily with the manner in which data is accessed
by the user (in some cases reflecting how data is stored in the com-
puter), and have little or no regard for the interpretation process
required to make information out of data.
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Since our concern here is with human oriented models of a world, we
adopt the “‘conceptual model” sense of the term rather than one of the
others.

If one accepts the need for conceptual models he is immediately
faced with the problem of identifying the constructs that facilitate their
creation. Not surprisingly, many of the proposed constructs have their
roots in epistemological methods for organizing knowledge.

Abstraction is a fundamental conceptual tool used for organizing
information. The following are just a few aspects of abstraction that are
useful in describing complex conceptual models:

® Classification. Grouping entities that share common characteristics
into a class over which uniform conditions hold. The class PERSON,
for example, can be derived from the entities john smith, mary
brown, efc., through classification. The inverse of Classification,
Instantiation, can be used to obtain other entities that conform to the
constraints associated with the definition of the class person.

® Aggregation. Treating a collection of concepts as a single concept.
For example, person could be thought of, rather naively, as an
aggregation of its name, address, and profession. Decompo-
sition 1s the opposite of Aggregation since it decomposes a class into
its constituent parts.

® Generalization. Extracting from one or more given classes the
description of a more general class that captures the commonalities
but suppresses some of the detailed differences in the descriptions of
the given classes. Employee, for instance, is a generalization of
the classes secretary, trucker, and accountant. The
process that has the opposite effect to Generalization (i.e., creates a
new class by introducing additional detail to the description of an
existing one) is called Specialization.

There are other abstraction mechanisms, such as ‘“normalization”
(suppression of details that deal with deviations from the norm and
emphasis of details that deal only with the normal or ordinary circum-
stances [BORG82a]) but the three above have received the most atten-
tion. Conceptual models of complex worlds are bound to be large if
they are to account for sufficiently many properties of their subjects.
The abstraction mechanisms discussed above offer both organizational
principles and design methodologies for conceptual models.

Not surprisingly, each of these mechanisms, as well as the representa-
tion abstraction noted in the introduction, has led to proposals for soft-
ware development methodologies. For example, Representation has led
to abstract data type-related methodologies and important programming
languages such as Simula [DH72], CLU [LSAS77], Alphard [WLS76], etc.
(See the chapter by Shaw.) These have been defined to support the



Generalization/Specialization 91

development of software through the gradual introduction of imple-
mentation detail. Similarly, aggregation has led to proposals for the
design of software through stepwise refinement (by decomposition)
(e.g., [WIRT71] [DIJK72]), and languages such as Pascal have been
found suitable for supporting this abstraction. Object-oriented program-
ming is based on classification and is supported by Simula and some of
its successors, notably Smalltalk [INGA78] and Actors [HBS73]. Finally,
generalization leads to methodologies that organize the collection of
classes constituting a model into hierarchies (taxonomies). Simula
(again!) and in a different context [SS77] follow this route.

Of course, a successful software development methodology has to
employ as many of the above mentioned abstraction mechanisms as
possible. For the purposes of research strategy, however, it seems fruit-
ful to focus on one mechanism and to formalize it, examine its applica-
bility, and study its usefulness; hence, this chapter concentrates on the
notion of Generalization/Specialization.

3. Generalization/Specialization

We are interested in formulating a methodology for building concep-
tual models based on Generalization/Specialization. The key idea of
such a methodology is that a model can be constructed by modelling
first, in terms of classes, the most general concepts and tasks in the
application area, and then proceeding to deal with sub-cases through
more specialized classes. Models constructed through such a process
have their classes structured into a taxonomy or so-called IS-A hierarchy.
For example, when building a student enrollment system for a univer-
sity, one might consider first the concepts of student and course and
the task of enrolling a student for a course. Later, the designer can
consider graduate and undergraduate students and courses, full- and
part-time students, day and evening courses, and the rules and regula-
tions that apply to these classes. Indeed, we believe that most situa-
tions of application programming, such as ones for student enrollment,
inventory control, airline or hotel reservations, inherently involve large
amounts of simple detail, and that taxonomies offer a fundamental tool
for coping with such situations.

Taxonomies of classes have been used in one form or another in arti-
ficial intelligence, programming languages and databases for over a
decade (e.g., [QUIL68] [DH72]). However, each author formulates them
differently. The rest of this section outlines the main points of view
and contrasts them to the one adopted in the chapter.
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One of the advantages of organizing descriptions into taxonomies is
the notion of inheritance. Since instances of a subclass are generally
also instances of its superclasses, there is no need to repeat the
information specified in the description of a class for each of its sub-
classes, and their own subclasses, efc. As a result, taxonomic descrip-
tions can be abbreviated, and some clerical errors can be avoided by
reducing the amount of repetition in descriptions.

There are two basic ways to view the description one associates with a
class such as PERSON (intended to model the concept of person). The
first is that the description simply characterizes a prototypical instance
of the concept, i.e., a prototypical person. It follows from this view that
some of the assertions of the description (e.g., that a person has a tele-
phone number) might be contradicted by a particular instance of the
class (e.g., bill brown who doesn’t have a telephone number
because he doesn’t have a telephone). Much of the Knowledge Repre-
sentation research within  Artificial Intelligence views classes
(concepts/frames/units/ ...) in those terms. The second view treats
the description associated with a class as asserting necessary conditions
that must be satisfied by all of its instances. Simula and the semantic
data models adopt this view. The consequences of this choice on the
nature of taxonomies (IS-A hierarchies) are immediate.

1. Class as prototype. If class C IS-A class B (i.e., C is a specialization of
B and therefore lower down on the hierarchy) and B has some prop-
erties, these properties can be over-ridden in the definition of C.
Thus even though ‘‘All birds fly” and ‘Penguins are birds,”
penguins do not necessarily fly (in fact they don’t!). Inheriting prop-
erties from a more general class is done by default here (default
inheritance), i.e., only if the description of the more specialized class
does not assert otherwise. The assertions associated with a class
have an ‘“‘unless-otherwise-told” or default nature.

2. Class as template. 1If C IS-A B and B has some properties, then nec-
essarily C must have the same properties. Asserting that every bird
flies implies, with this view, that penguins can’t be birds since they
don’t fly. Thus inheritance of properties from a class to its
specializations is now strict (strict inheritance).

We adopt the second view of what a class is, and, as we will see in
Sections 5 and 6, treat exceptions through a separate exception-
handling mechanism rather than by weakening the assertional force of a
class definition.

There is still another choice to consider once one has made this deci-
sion. Neither Simula, nor the semantic data models that have been
proposed, with the exception of TAXIS, allow a property to be
“refined” as one specializes a class. For instance, if we have asserted
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that every person has an age between 0 and 120 (years) in the descrip-
tion of the class PERSON, we would like to refine this property to
‘“every student has an age between 12 and 80 when PERSON is special-
ized to obtain STUDENT. With strict inheritance a new class inherits
all the properties of its generalizations and it can also have new proper-
ties of its own. However, it cannot refine any of the properties of its
generalizations along the lines suggested above.

We consider that an important modelling tool is the ability to refine
properties of a class as one generates its specializations.

We would like to emphasize even at this stage that the utility of gen-
eralization hierarchies for software engineering is not limited to the use
of inheritance, although this feature is often the most visible. In partic-
ular, the construction of the hierarchies systematizes and structures the
process of informationfrequirements gathering, and since the hierarchies
persist even after the system is designed, they provide an organization
of the information that facilitates the location of information and the esti-
mation of the effect of changes (e.g., changes to a class description will
affect all subclasses of that class) during program maintenance. Fur-
thermore, the development of procedures through stepwise refinement
by specialization down the IS-A hierarchy permits an incremental testing
of such programs, in contrast to programs developed through stepwise
refinement by decomposition [WIRT71], where only the final stage of
the refinement is an executable program. In this chapter, we shall con-
centrate on the use of Generalization hierarchies in the description of
Information Systems; we describe elsewhere the application of these
ideas to requirements specification [GBM82] and verification [WONG81]
[BORG81], among others.

4. Taxonomic Specification

As argued earlier, we view our task as having to describe the concep-
tual data objects and activities that occur in the domain of discourse,
and their associated constraints. Throughout this section our ideas will
be illustrated with examples from the student enrollment process at the
University of Toronto. In order not to distract from the methodological
aspects of this chapter, we have chosen to present the examples in a
semiformal way, preferring a skeletal language augmented with English
descriptions of programming language code; the interested reader is
referred to [WONGS81] and [MBWS80] for details of a programming lan-
guage into which these descriptions can be immediately translated. Bet-
ter known languages such as Simula [DH72] and Smalltalk [INGA78],
and recent systems such as Pie [BG80a], also support versions of the
abstractions involved in our methodology.
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Aggregation is supported by the notion of property—a function
which, when evaluated for an entity, returns one of its components or,
more vaguely, a related entity. For example, if “cs100” was some par-
ticular course, then title(*‘cs100”), limit(“cs100”), size(‘‘cs100”) and
class-list(*‘cs100”’) might represent respectively the title of this course,
‘Introduction to Programming,” the maximum and current enrollment
in the course, say 800 and 647 respectively, and the list of students cur-
rently enrolled in “cs100.” In the case of aggregation as applied to an
activity, some properties would have as value those activities that would
result from one step of decomposition as suggested by stepwise refine-
ment. Other properties of an activity would indicate the participants in
the activity, as well as possibly other “meta-information” such as its
beginning time, deadline for completion, etc. For example, if “e” is
the activity of enrolling the student ‘bilbo” into the course “cs100,”
then we might have student(“e€”) = “bilbo,” course(‘e”) = “cs100”
as the participants, and one of the component activities, say p2(‘e”),
would add student(*‘e”) to the class-list of course(‘‘e”).

Clearly, describing a model in terms of such specific “factual”
information is hardly satisfactory for the purposes of software specifica-
tion. In fact, the information required is of a “‘generic” nature, and
this imposes limitations on the facts that the computer system might
record. These are known as semantic constraints [HM75].

Classification provides one important means for introducing such
generic information by allowing us to present both the properties
applicable to all of the instances of a class and the constraints that
restrict the possible values of these properties. For example, the defi-
nition of the class COURSE might include as properties title, limit, size,
class-list, instructor, etc. Constraints on these would include at the very
least an indication of the range classes of these functions, as well as
possibly more complex limitations. For example, size might have 0 to
2000 as range, as well as the additional constraint that the size of the
course must be no greater than its /imit (constraint course-limit of
COURSE). This kind of information is obviously closely related to the
notions of type declaration in Programming Languages and to schema
definition in Databases. The diagram in Figure 4.1 describes two
classes of objects, STUDENT and COURSE, which will play a central role
in our enrollment system.

Whereas classification of objects yields data class definitions, classifi-
cation of activities yields transaction class definitions, similar to proce-
dure declarations in Programming Languages. The participants in the
activity play the role of formal parameters in procedure declarations;
the constraints on the values of these properties include type
information and initial, final, and invariant conditions, which act as
‘well-formedness’ constraints on the transaction invocation and execu-
tion. As suggested above, other properties indicate the subactions
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comprising the definition of the procedure. Figure 4.2 is a schematic
description of the ENROL transaction class in our proposed student
record system.

data class STUDENT with
attributes
name: PERSON_NAME;
age: 12..80;
home-address: ADDRESS;
univ-address: ADDRESS;
faculty: {Arts&Science, GradSchool, Medicine};
status: {Full-time, Part-time}
courses-taken: set of COURSE;
taking-courses: set of COURSE;
end STUDENT;

data class COURSE with
attributes
title: STRING;
dept: DEPARTMENT;
limit: 0..2000;
size: 0..2000;
enrollment: set of STUDENT;
level: {1st-year,...,4th-year,intro-grad,adv-grad};
instructor: PROFESSOR;
invariants
course limit: (size < limit);
end COURSE;

Figure 4.1 Definition of STUDENT and COURSE Classes

transaction ENROL with
parameters
s: STUDENT;
c: COURSE;
prerequisites
Not-full?: (c.size<c.limit);
actions
a;: add ¢ to the list taking-courses of s;
as: add s to the enrollment-1list of c¢;
a,: increment size of ¢ by 1;
end ENROL;

Figure 4.2. The ENROL Transaction Definition

Since defining the appropriate classes is an important aspect of our
methodology we offer two heuristics for designers.

1. In general, properties, regarded as functions, are undefined every-
where except over the instances of the class they have been associ-
ated with, and usually every new class definition introduces several
new properties; hence a new class ought to be introduced whenever
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we desire a property whose domain of definition is not an already
existing class.

2. Secondly, almost all semantic constraints are stated through quantifi-
cation over the instances of classes (e.g., all instances of STUDENT
must have as age an instance of INTEGER in the range 12 to 80).

Additional expressive machinery occasionally may be needed but we
feel that these heuristics are adequate for a large number of modelling
situations.

Our methodology so far has only systematized and slightly extended
normal practices in software specification. As stated above, we are par-
ticularly interested in extending this methodology to deal with situa-
tions where there are a multitude of minute details relating to many
classes that share common characteristics. Specialization allows us to
describe each subclass of a more general class by specifying only the
additional details necessary for its definition, through the notion of
inheritance described in Section 3. As discussed there, in specializing a
class we can 1) “‘strengthen” any of the constraints stated for the par-
ent class (i.e., replace a constraint of the parent class, say A, with a
stronger one B such that B implies A); 2) provide additional con-
straints; and/or 3) introduce new properties and related constraints.
Figure 4.3 is a description of the subclass GRAD STUDENT of STU-
DENT.

data class GRAD_STUDENT is a STUDENT with
attributes
faculty: {GradSchool};
dept: DEPARTMENT;
advisor :PROFESSOR;
level: {MSc, PhD};
end GRAD_STUDENT;

Figure 4.3 A Specialized Subclass of STUDENT

Note that the faculty property of STUDENT was (consistently) refined
in GRAD_STUDENT so that it admits only one value, GradSchool.
Also, three new properties, dept, advisor, and level were introduced;
these only apply to graduate students while all other properties of STU-
DENT are of course inherited by GRAD_STUDENT. It may be worth
contrasting our notion of inheritance with that used in Simula or
Smalltalk. Simula allows only complete textual inheritance in the sense
that in describing subclasses one cannot alter the code described for the
superclass, but must inherit it completely (strict inheritance). Smalltalk
on the other hand uses default inheritance. Our description of Special-
ization above requires that the refined version of a constraint must not
contradict the original one; this ensures that all instances of subclasses
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are also legal instances of all the classes higher up in the hierarchy.
Finally, it appears that neither Simula nor Smalltalk allows multiple
inheritance (i.e., inheritance from several distinct classes), a feature
that we shall find quite useful in describing transactions.

In the case of transactions, the specialization of parameters proceeds
in the same way as that of properties for data classes. As far as compo-
nent properties are concerned, one can either specialize the transaction
class of which a property must be an instance, or provide additional
properties. The example in Figure 4.4 illustrates the specialization of
the transaction class ENROL whose instances have graduate students as
the student s participant.

specialize ENROL (s : GRAD_STUDENT, c¢ : COURSE)
add
pPrerequisite
Advanced? (c.level 2 4th-year);
action
a,t inform School of Graduate Studies
about the enrollment;
end;

Figure 4.4  Specializing the ENROL Transaction

Here an additional prerequisite is added to ENROL for graduate stu-
dents to ensure that they are not allowed to take courses that are below
Fourth Year. There is also an extra action that will be carried out only
during the enrollment of graduate students. We will henceforth use
ENROL (s : Cl, ¢ : C2) to denote the subclass of ENROL whose
instances have the student s in C1 and the course ¢ in C2.

In order to provide a more convincing demonstration of the utility of
specialization as a specification methodology, we present next a partial
list of conditions on the enrollment of students in Computer Science
courses. Many of these were actually required until recently at the Uni-
versity of Toronto, although some were not checked until the students
were told that they had not taken the appropriate program and would
have to take one or more additional courses! It would clearly be bene-
ficial if these conditions were incorporated into any computerized stu-
dent information system, and hence modelling these constraints
becomes an important goal. For ease of reference, we have labeled
each with a mnemonic name followed by a question mark, indicating
that each of these will be a constraint predicate. The list in Figure 4.5
is clearly haphazardly drawn up and it is exactly our point that such
restrictions should be gathered in a more systematic way by system
designers, and hence our software development methodology should
support such systematization. In this case, we have chosen to encode
most, although not all, of these constraints as prerequisites of the
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ENROL transaction. The understanding is that if any of these
prerequisites is false, an exceprion will be raised and execution of the
transaction will be suspended. (We leave unspecified for the moment
what action should be taken to handle such exceptions.) As the first
step in our description, we present in Figure 4.6 the prerequisites and
actions of ENROL that apply to all students and all courses. This is in
accord with our proposal that one ought to describe first the more gen-
eral classes, and hence the constraints which apply to most objects.

Not-taken-before? A student cannot take the same course more than

Permission?
Part-time-min. ?
At-least-4th-year?
Not-full?
Undergrad-min. ?
Undergrad-max. ?

Not-excluded?

Before-deadline ?

Offered?

Has-preparation?

Part-time-max.?
Areas-OK ?

Another-1st-year?

once.

An undergraduate student requires the permission of
the instructor before taking a graduate course.

Part-time students need not take any courses in any
particular year.

Graduate students cannot take first, second, or third
year courses.

A student cannot enroll in a course whose enrol]-
ment limit has been reached.

A full-time undergraduate must take at least §
courses each year.

A full-time undergraduate may not take more than 6
courses in one year.

There exist groups of mutually exclusive undergrad-
uate courses and an undergraduate may take at most
one course from such a group.

Undergraduates must register in courses by October
13th. -

A student cannot take a course that is not offered at
the time requested.

An undergraduate course may have prerequisites that
an undergraduate student must have taken in previ-
ous terms.

Part-time students may not take more than 3 courses
a year.

A graduate Computer Science student must have
taken courses in each of three major areas.

At most 6 First Year courses may be counted toward
the 22 required for a B.Sc. degree.
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Specialist? Arts & Science students desiring a specialist’s degree
must have taken the appropriate selection of courses.

Has-coreqs? Certain  undergraduate courses may require
undergraduates to take other courses at the same
time (e.g., in mathematics).

Probation-max.? An undergraduate student on probation may take no
more than 5 courses a year.

Grad-max? Graduate students should not take more than 6
half-courses a year.

Figure 4.5  Restrictions on Enrolling in Computer Science Courses

ENROL (s: STUDENT, c: COURSE);
prerequisites

Offered?;
Not-full?;
Not-taken-before?;
actions
a,: add ¢ to the list taking-courses of s;
ay: add s to the enrollment-list of c;
aj: increment size of ¢ by 1;
end ENROL;

Figure 4.6  Most General Definition of ENROL

In order to introduce further details about ENROL, we can first
describe two subclasses of STUDENT, namely GRAD STUDENT and
UNDERGRAD_STUDENT. Since one of the properties of ENROL is the
parameter s, supposedly an instance of STUDENT, we can describe two
subclasses of ENROL: one for which s is restricted to be an instance of
GRAD_STUDENT, another for which s is an instance of
UNDERGRAD_STUDENT. In each case, we can introduce further con-
straints that must be checked before enrolling a student in a course (see
Figure 4.7).

Similarly, we can distinguish subclass GRAD _COURSE and
UNDERGRAD COURSE of COURSE, and in the case of graduate
courses we have a number of additional actions to be done in ENROL,
as illustrated in Figure 4.8.

There are two important points to note here about the interpretation
of ENROL (“bilbo,” “cs100’), assuming “bilbo” is an instance
of UNDERGRAD_STUDENT and ‘“csl100” is an instance of GRAD
COURSE: by inheritance, this activity will have all the properties of
ENROL(s: STUDENT, c: COURSE), ENROL(s: UNDERGRAD _STUDENT,
¢:COURSE), and ENROL(s:STUDENT, ¢:GRAD COURSE), and by an
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obviously useful convention, all inherited prerequisites will be checked
before any of the inherited actions will be executed. In this example
multiple inheritance is obviously a useful tool for the designer of a
system.

specialize ENROL(s: UNDERGRAD_STUDENT, c: COURSE)
add
prereguisites
Before-deadline?;
Not-too-many: Undergrad-max?;
end;

specialize ENROL (s: GRAD_STUDENT, c: COURSE);
add
pPrerequisites
At-least-4th-year?;
Areas-0QK?;
Not-too-many: Grad-max?;
actions
Ay, inform School of Graduate Studies
about the enrollment;
end;

Figure 4.7  Some Specializations of ENROL

specialize ENROL (s: STUDENT, c: GRAD_COURSE) ;
add
actions
ag: issue to s a key to the library;
aq: give s an unlimited $ computer account;
end;

Figure 4.8  Another Specialization of ENROL

Resuming the task of introducing the constraints in Figure 4.5,
we can now consider specialization of ENROL where more than one
parameter is specialized. As a result, we add additional constraints
on ENROL(s: UNDERGRAD_STUDENT, ¢ UNDERGRAD_COURSE),
ENROL (s: UNDERGRAD_STUDENT, ¢:GRAD COURSE) and ENROL
(s: GRAD_STUDENT, c: UNDERGRAD_COURSE), as in Figure 4.9.

Finally, by creating additional subclasses PART_TIME STUDENT and
STUDENT ON_PROBATION of UNDERGRAD STUDENT, we specialize
the Not-too-many? prerequisite to Part-time-max? and Probation-max?
respectively.
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specialize ENROL(s: UNDERGRAD_STUDENT, c: GRAD_COURSE);
add
prerequisites
Permission?;
end;

specialize ENROL(s: UNDERGRAD_STUDENT, c: UNDERGRAD _COURSE) ;
add
prerequisites
Has-preparation?;
Not-excluded?;
Another-1st-year?;
end;

specialize ENROL(s: GRAD_STUDENT, c: UNDERGRAD_COURSE) ;
add
prerequisites
At-least-4th-year?;
end ;

Figure 4.9  Further Specializations of ENROL

A number of remarks are in order at this point. First, note that
some restrictions, such as the minimum number of courses that a stu-
dent must take, cannot be checked until a student has enrolled in all
the courses he or she was going to take, and hence these restrictions
should not be placed in the ENROL transaction. Instead, one may have
a REGISTER transaction which requires as a parameter the list of
courses that the student intends to take in that year, and the above con-
ditions would then be prerequisites on this list of courses. Alterna-
tively, after a certain date has passed, a transaction could be run auto-
matically to check such constraints on the list of courses each student is
taking. Secondly, note that since we treat data and transactions in a
uniform manner, there is no reason why the conditions in Figure 4.5
could not be considered as invariant assertions for the classes of objects
STUDENT and COURSE. In particular, they could be grouped around
the class-list property of COURSE and properties ftaking-courses and
courses-taken of STUDENT, and they could be introduced in a manner
similar to the one used by describing the appropriate subclasses of STU-
DENT and COURSE. In this case however, violations of the constraints
would be detected when the ENROL procedure attempts to insert a new
element in the taking-courses list of a student, rather than at the time
ENROL is originally invoked.
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5. Scripts

As we have remarked in the previous section, not all conditions in
Figure 4.5 can be accounted for as prerequisites of the ENROL transac-
tion (for example: checking for co-requisites or for conditions involving
a minimum number of courses where one needs to know what other
courses the student is or will be enrolling in this year). Furthermore, a
central attribute of many systems is the ability to communicate interac-
tively with its users in order to obtain the data which “drives” the
transactions. We must therefore be able to specify the communication
protocols that make up the user interfaces.

For the above purposes we propose scripts (generalized processes that
have elaborate communication and synchronization mechanisms for the
system designer). The script formalism used is an adaptation of
Zisman’s Augmented Petri Nets [ZISM78] proposed for office automa-
tion systems and it is described in more detail in [BARR80]. Each script
is essentially a Petri net that has parameters, local variables, and state
transitions. In turn, each transition consists of conditions that must be
true in order for the transition to fire, and actions that are to be carried
out if the transition does fire. In order to enable communication,
scripts can employ operators for message passing between a script and a
terminal, or, more generally, between any two scripts. These operators
are based on Hoare’s primitives give and take [HOAR78], and they pro-
vide further ability for synchronization, especially when the clock is
allowed to send “‘wake up” messages at desired times. Although much
more elaborate communication mechanisms are being currently devel-
oped, we will consider here a message as simply a form that has text and
slots that can be filled by the user (or some other script) and then sent
off. (See [TSIC82] for a detailed discussion of the utility of forms as
communication means in an office environment.)

To illustrate the use of scripts let us place enrolling into courses into a
wider context. At our university, students register first with the univer-
sity. This includes paying fees, selecting a program of studies that is
“correct,” etc. However, students take courses directly from the
departments offering them, thus allowing the departments to have
direct contact with students in order, for example, to sell them required
lecture notes, lab materials, efc. Consider therefore the TAKE COURSE
script which describes the protocol for taking a course (see Figure 5.1).

The script is parameterized by the department d, which is supposedly
offering the course, and it includes five states represented by circles
and five state transitions represented by vertical bars. Each transition
has associated conditions and actions, and these are separated by => on
the diagrams. An instance of the TAKE_COURSE script is created by
the secretary of the appropriate department whenever a student enrolls
in a course. The initial transition on the script requests a description of
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the student s and the course ¢, which are properties of the script. Once
this information has been received, the script proceeds with the process
of enrolling the student for the course, and this includes expecting a
grade from the instructor of the course. At the same time, the script is
set up to expect and act on a ‘““drop the course” request at any time
while the student is taking the course. Following normal procedures for
enrolling, once the student and the course are identified the script
invokes the ENROL transaction and then awaits the message indicating
the grade that the student has received in the course. We remark that
this script ““lives” until the final state is reached, which may be several
months later, and that every student would have several such scripts,
one for each course he is taking, thus requiring sophisticated use of the
database for maintaining all this information.

parameters

d : department;
locals

s : student;

¢ : course;

Deadline passed? =»>
Remind c.instructor;

true =>
Ask user to true =>
identify s and Cs Call ENROL(S,C);

Gnitm stat9 y @ —

Grade received? =>
Record grade; .
Send message

to registrar;

Received "drop course"
message? =>
if already enrolled,
undo enrollment;

4 } {::-final stat;i:)

Figure 5.1 Diagram of the TAKE_COURSE Script

Scripts, like all other constructs, are treated as classes in our method-
ology. Thus their bodies (i.e., their states and transitions), and also all
other information associated with their definition is specified through
properties that link a script to other classes. (Figure 5.2 shows the defi-
nition of the TAKE _COURSE script.)
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script class TAKE_COURSE(d)
parameters
d: DEPARTMENT ;
locals
S: STUDENT;
c: COURSE;
grade: {0..100};

states
initial: initial_state;
final: final_state;

others: state_2, state_3, state_4;

transitions
obtain information:
from initial state;
to state_2, state_4;
conditions none
actions get s and c¢ from user;
enrollment:
from state_2;
to state_3;
conditions none ;
actions call ENROL(s,c);
late-grade:
from state_3;
to state_3;
conditions deadline for grade for s,c passed?
actions send message to instructor of c
have-grade:
from state_3;
to state_4;
conditions sent a grade?
actions record grade and send message to
registrar;
drop course:
from state_4;
to final state;
conditions sent "drop course" message®?;
actions undo enrollment;
end TAKE_COURSE

Figure 5.2 Textual Description of TAKE_COURSE Script

It follows that transitions can be specialized in a manner similar to
transactions, and more generally one can add new states and transitions
in order to create a script that applies in more restricted circumstances
than a given script. For example, the Engineering departments may
require a mid-term mark to be recorded and mailed to each student;
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this could be accomplished by specializing TAKE COURSE (d: DEPART-
MENT) to TAKE_COURSE (d: ENGINEERING DEPT) by adding the
script in Figure 5.3.

true => call ENROL(s,c);

Received mid-term grade? =>
Record mid-term grade;

Deadline for mid-term passed? =»>
Remind c.instructor;

Figure 5.3  Additions for TAKE_COURSE(d:ENGINEERING DEPT)

Before leaving this section we present a second example of a script
that models the sequence of events from the time an undergraduate
student registers for his nth (1< n<4) year of (university) study until
the time he completes it (Figure 5.4). The basic protocol described by
the script involves accepting information about the student, followed by
the courses he proposes to take, then waiting for the grades he/she is
assigned in these courses, and finally determining that the student has
completed the year satisfactorily. Secondary protocols are also defined
to take care of such contingencies as withdrawal from the program or
late arrival of grades.

To summarize, scripts are useful in enforcing dynamic integrity con-
straints on transaction call sequences (e.g., one can’t receive grades
until enrolled in a course), and in defining the format and the protocol
of interactions with users. They are a natural place for exception-
handling, including exceptions arising because of time delays, as will be
seen in the next section.

For simple examples, the introduction of scripts as modelling tools
may seem heavy-handed and perhaps unnecessary. There is evidence,
however, that designing the environment within which a system will
run, including its user interfaces, is one of the thorniest problems fac-
ing a system designer [CM79]. We consider this observation a sufficient
justification of the introduction and use of scripts within our modelling
framework.
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initial- stat€:>
\J7
waiting for V7
courses SRz
<,

have courses

waiting for
grades

have grades

waiting for waiting for ?/
withdrawal decision )

process withdrawal passed year

request
year of study
over

Figure 5.4 The YEAR OF STUDY Script

get student
information

“courses late

= failed courses

6. Exceptions

The ability to manage exceptions (i.e., deal with over-abstraction) is
characteristic of human behaviour and, we believe, of central impor-
tance in managing a multitude of details. Until recently this ability has
been noticeably absent from computer application software. In our
case, the traditional view dictates that a transaction such as ENROL
should be aborted, hopefully with at least an error message, if any of its
constraints (e.g., prerequisites or restrictions on parameters) were not
met. Alternatively, one might replace the prerequisites by successive
IF-THEN conditionals, specifying in each case the course of action to be
taken if the constraint were false. In addition to the limitation that this
imposes on handling exceptions (see [LEVI77]), it appears to run
counter to the “natural” flow of description: one has to constantly take
detours from describing how students usually enroll in courses in order
to say what is to be done in rare special cases. A more palatable alter-
native appears to be to adopt the convention that whenever a constraint
(such as a prerequisite) evaluates to false, an exception object is raised
(i.e., is inserted as an instance of a special class). One can then
describe in a separate pass the ways in which exceptions are to be
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handled. Furthermore, exceptions and exception-handlers can be
described using the same methodology of concept specialization.

In order to simplify the discussion, we assume in our example that
whenever a prerequisite is not satisfied, an instance of the exception
labelled by the negation of the condition is raised (e.g., if Not-full? is
false then the exception Full is raised).

One possibility in specifying exceptions is to proceed methodically
down the specialization hierarchy of ENROLs and specify which excep-
tions are raised when different conditions are violated. Alternatively,
we may want to organize exceptions, including those raised by condi-
tions that could not be checked in ENROL, into a specialization hierar-
chy organized along different lines than that of ENROL.? Figure 6.1
illustrates a hierarchy of exception classes constructed by answering the
question “What can go wrong with enrolling in a course?” at various
levels of generality.

ENROL EXCEPTION

N

COURSE CHOICE _EXC TIME _VIOLATION COURSES_UNAVAILABLE

KNOWS TOO_MUCH AFTER_OCT.13 NOT_OFFERED FULL
<T CAN _HANDLE _WORK WRONG_COURSE_PLAN
EXCLUDED E\
TAKEN_BEFORE o PERMISSION %FO_COREQS
BELOW_ATH YEAR UNPREPARED YAREAS_NOT_OK
TOO_MANY_COURSES NOT_SPECIALIST

TOO_MANY_FIRST_YEAR
TOO_FEW_COURSES
TOO_MANY_FOR_UNDERGRAD

TOO_FEW_FOR_PART_TIME

Figure 6.1 Specialization Hierarchy for Exceptions

The topmost exception class on the hierarchy, ENROL_EXCEPTION is
intended simply to signal that an exception was raised during the execu-
tion of an ENROL transaction. Turning to its immediate subclasses,
COURSES_UNAVAILABLE indicates that the course cannot be accom-
modated at the university, so one must abort the ENROL that caused
the exception. Alternatively, the system may give the student

3 Clearly, in doing this type design, computer aids are imperative when one checks to
see whether all prerequisites have been accounted for.
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information about when the course will next be given, and it might put
the student on a waiting list before aborting. For TIMING
VIOLATIONS, students can petition to a special committee in order to
be allowed to register late. In an automated office environment this
might result in the ENROL being suspended while a PETITION is taking
place. As far as COURSE CHOICE EX is concerned, there is nothing
we can say that is applicable in all cases; one of the advantages of our
methodology over more traditional approaches such as decision tables is
that we do not have to say anything if we have no new information to
add. However, considering subclasses of COURSE CHOICE EX, we
note that instances of KNOW _TOO MUCH should always be handled by
“‘abort,” since students should not be allowed to pick up credits gratis,
while instances of CAN'T HANDLE WORK require petitioning again.
In neither case need we say anything more about the subclasses of
these two types of exceptions. Finally, the WRONG COURSE PLAN
exceptions require distinctive individual treatment. For NO_
COREQUISITE, the student must take the other course. For TOO FEW _
COURSES, he must take other courses, efc.

Turning to exception-handling, we assume that for each exception
raised within a transaction 7, the exception-handler, another transaction
or script, is specified by the caller of 7. The following specifications
illustrate the exception-handling mentioned in the first half of this sec-
tion.

To start with, we specify in TAKE_COURSE (d: DEPARTMENT), and,
in particular, in association with the call to the ENROL transaction, the
exception-handler to be used in case of an ENROL _EXCEPTION (Figure
6.2(a)). As indicated earlier, at this level exception-handling simply
consists of a message to the user naming the exception that has been
raised. Let’s call this most general exception-handler EX HANDLER (e:
ENROL_EXCEPTION), shown in Figure 6.2(b). EX HANDLER assumes
that its exception argument has two associated properties, std and crs,
through which one can determine the student and the course for which
the exception was raised.

Dealing with some of the more specialized exceptions involves the
adding of actions to be carried out by EX HANDLER. For example,
EX HANDLER (e: COURSE_UNAVAILABLE) may output, in addition to
the exception message, another message that specifies when the course
is given in the future, and then abort the attempted enrollment (see
Figure 6.3).

Other exceptions require additional states and transitions in
EX HANDLER. Thus TIMING_VIOLATION exceptions involve petition-
ing a committee and may eventually result in an enrollment (see Figure
6.4).
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script class TAKE_COURSE(d: DEPARTMENT)

enrollment:

actions call ENROL(s,c)
for exception eCENROL_EXCEPTION with std*—s, crs+c
use EX_HANDLER(e)

Modified enrollment transition in TAKE_COURSE

(a)

script class EX_HANDLER(e)
parameters
e: ENROL_EXCEPTION;
states
initial: initial_state;
final: final_state;
others: none;
transitions
send message;
from initial state;
to final state;
conditions none
actions send Class_of(e).message
end EX_HANDLER;

Class_of(e) evaluates to the most specialized class e is an
instance of, say C, and C.message evaluates to a(n error)
message associated with that class as an attribute.

(b)

Figure 6.2 Raising and Handling Exceptions

specialize EX_HANDLER (e: COURSE_UNAVAILABLE) ;
transitions '
send message:
actions
inform user when the course is given next;
send "drop course" message to TAKE_COURSE
(std,crs);
end;

Figure 6.3  Specialization of an Exception-Handler



110 On Conceptual Modeling

specialize EX_HANDLER (e: TIMING_VIOLATION);

locals

reply: ({YES,NO};
states

others: awaiting_reply;
transitions

send message;
from initial_state;
to awaiting_reply;
conditions none;
actions
send type (e).message;
send petition (e.std, e.crs) to committee script;
positive reply;
from awaiting_reply;
to final_state;
conditions sent reply = YES?
actions
inform user;
call ENROL(e.std,e.crs);
negative reply;
from awaiting_reply;
to final_state;
conditions sent reply = NO?
actions
inform user;

send "drop course" message to TAKE_COURSE(std, crs):
end;

Figure 6.4  Another Specialization of EX HANDLER

send message

fin_state

init_state‘j:>

enrollment
have_reply

accept reply
(:;get_reply enroll in coreq

student wants to take coreqs?

(Egi_about_cor;gg>

Ask_about_coreqgs is also an initial state. Tran-
sition send message only fires if the reply has
been negative; otherwise, enrollment fires.

Figure 6.5  Exception Handler for Course Corequisites
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Among COURSE CHOICE EX exceptions, only WRONG_COURSE _
PLAN requires special exception-handling facilities. For NO_COREQS
exceptions, for example, EX HANDLER must communicate with the
user to determine whether the student is willing to enroll in all these
courses. If he is, EX HANDLER carries out all such enrollments and
then proceeds with the enrollment originally requested. This specializa-
tion of EX HANDLER is shown graphically in Figure 6.5.

We conclude this section by noting that the ability to describe scripts,
exceptions, and exception-handlers within the same framework as pro-
vided for the normal data and transaction classes gives a pleasing
uniformity and conceptual parsimony to the proposed methodology.

7. Conclusions

We have outlined and illustrated the principal elements of a software
specification methodology that combines stepwise refinement by
decomposition with concept specialization in order to introduce the
multitude of details typically associated with large interactive systems.
To recapitulate, the methodology suggests that the designer should start
by defining the most general naturally occurring classes of objects and
events in the domain. This is to be accomplished by the use of named
properties that connect related concepts, and by the use of assertions
that restrict the potential relationships. Further details of the proposed
system are then introduced in successive iterations by describing sub-
classes of already presented classes and specializing transactions in
order to deal with the objects in these classes.® The result is a hierarchy
(taxonomy) of data, transaction, and script classes on which inheritance
operates to abbreviate natural redundancy without losing the benefit of
being able to check consistency. Once the usual/normal aspects of the
system are described to some level of detail, the designer can describe,
using the same methodology, the exceptions raised by the failure of
assertions and their handling mechanism.

In evaluating the methodology, we feel that it is conducive to a natu-
ral style of description because it is oriented toward the conceptual object
and activities occurring in the user’s world. Our heuristics for identify-
ing classes, and the suggestion of describing first general classes and
then more specialized subclasses, provide some needed guidance to the
designer. Similarly, the virtual specialization hierarchy that results

4 Of course, this does not prevent one from introducing at any stage new classes, trans-
actions, and scripts as they are needed.
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when considering the possible specializations of each parameter for a
transaction is a convenient conceptual rack on which to hang the details
of the problem domain. In addition to its role of abridging descrip-
tions, multiple inheritance, as illustrated in our example, allows one to
think separately about independent aspects of the world (e.g., under-
graduate students and graduate courses) with inheritance taking care of
their interaction. Finally, we feel that the systematic treatment of
exceptions and exception-handlers within the same framework of data,
transaction, and script classes supports another important abstraction
principle: the ability to disregard the exceptional or unusual situations
during the first pass in the design.

By developing program specifications according to the above method-
ology, one also gains some advantage in verifying the correctness of the
final system. For example, having verified that a ‘“‘general” transaction
(i.e., one high in the generalization hierarchy) maintains an invariant,
one can often (because of inheritance) reuse this proof in demonstrat-
ing that the various specializations of the transaction also maintain the
invariant (see [WONG81] [BORGS81]).

Two other chapters in this book, those by King and McLeod and Bro-
die and Ridjanovic, also address the problem of designing complete
database systems; hence a brief comparison of the three approaches is
in order.

To begin with, there are a number of striking similarities in the gen-
eral philosophy of the approaches taken, similarities due in no small
part to the principles expressed in the title of this book: ‘“‘conceptual
modelling.”” Thus all three chapters start the design process with a con-
ceptual model of the enterprise as seen by the system’s eventual users.
This model is meant to capture as much of the semantics of the real
world as possible, certainly more than in traditional database design; in
other words, all three chapters would be classified as work in
“semantic/conceptual data models.” Among others, this leads to an
emphasis on modelling entities and their semantic relationships rather
than on pure data organization. In a departure from most other seman-
tic data models, all three emphasize the importance of modelling the
dynamic/behavioural, not just the static parts of an enterprise, and the
need to integrate these two facets of the description. Furthermore, all
three chapters recognize the difficulties that arise in designing large,
complex systems, and hence they emphasize the importance of a meth-
odology of design that is inseparably linked to the modelling features
offered. As a natural extension to this concern, the three research
groups also offer a variety of computer tools that are meant to assist the
designer in achieving a complete and accurate design.

Among the notable general differences are the fact that TAXIS, at
least as presented here, focuses on design at one level only, while both
the others consider design at several levels of detail. Thus in ACM/



Generalization/Specialization 113

PCM (see the chapter by Brodie and Ridjanovic), there is a general
graphical schema, a more precise predicate-based technique for specifi-
cation, and finally a functional technique for full details, wherever
desired, while the “‘event model” of King and McLeod has an initial
design schema, which drives the building of a conceptual schema,
which in turn forms the basis of a physical design. On the other hand,
through the notions of scripts, messages, exceptions, and exception-
handlers, TAXIS probably addresses in detail a wider variety of aspects
of an information system, though we should point out that the event
model does model at least part of what scripts are intended to accom-
plish.

Although both this chapter and that of Brodie and Ridjanovic look for
uniformity in the way objects and activities are modeled, they come up
with different answers. ACM/PCM sees association of objects as paral-
leling iteration, and specialization of concepts corresponding to choice,
while TAXIS’s notion of iteration is not related to the abstraction princi-
ples, and specialization of transactions is quite similar in spirit to spe-
cialization of entities. A different attempt at uniformity shows up in
the chapter of King and McLeod, in their novel attempt at incorporat-
ing the modelling events themselves into the model, thus bringing pro-
gram maintenance into the same uniform framework.

Finally, the chapters can be distinguished by the basic metaphors
which in some sense ‘“‘drive” the design process. In the event model,
the design schema describes mostly events and their interactions, and
this drives the process of describing entities, efc. In contrast, the other
chapters use the structure of the data descriptions to ‘“‘drive’ the
description of the activities. In ACM/PCM, this is evident from the way
that the actions associated with an application object are determined by
its structure — the “‘context” (e.g., in the Hotel-reservation actions). In
TAXIS, on the other hand, the hierarchy of data classes “drives’’ the
specialization of transactions, while the hierarchy of exceptions drives
that of exception-handlers.

There are, of course, many other comparisons that could be drawn,
but space limits us to those which we feel are most significant.

To conclude, we reiterate our belief that taxonomic organization is an
essential human activity that allows us to cope with multitudes of detail.
Our goal is to propose linguistic and computer tools that would support
precisely such an organization during the development of a software
system. Evidence of such tools can be seen in [BMWS$2] and in
forthcoming MSc theses by B. Nixon and P. O’Brien. Since, in the end,
the only demonstration of the importance of an idea is its successful
practical use, our group has attempted to model in significant detail a
number of applications in the university and hospital environments,
with results presented in [WONG81] and in forthcoming theses by C.
Di Marco and I. Buchan. Finally, research is still in progress on the use
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of these ideas for general requirements specification and for designing
the language of interaction between users and a specific system.

The authors gratefully acknowledge the permission of North Holland
Publishing Company to reproduce portions of an earlier version of this
paper.
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