
Towards An Ontology of
Computer Software

Speaker: Xiaowei Wang

Supervisor: John Mylopoulos, Nicola Guarino

University of Trento, Italy

ISTC-CNR, Italy
xwang@disi.unitn.it

1/25 Oct. 23rd, 2013

• Algorithm (e.g. a bubble sorting algorithm)

• Source code (e.g. encoded in Java/C)

• Realization of source code (e.g. the code stored on a hard disk)

• Running process of algorithm (e.g. sorting process running in

a computer)

 Specification document?

 Design document?

 Requirement?

We try to provide a unified concept of software.

What is software ?

2/25

Definition of computer
software

Computer software is an artifact consists of computer

programs that implements a protocol (created from a

specification) in order to satisfy some requirements

under some domain assumption.

3/25

Social-technical system

4/25

People

Other objects

Information System

Coffee machine example

5/25

Tom

Socialtechnical system

6/25

o3: Tom

o1: Coin
o2: Coffee

o4: Automatic coffee
matchine with button

and coin socket

State of affairs

7/25

p1:Coin inserted=F

p2:Button pressed=F

p3:Coffee out=F

s1

p1: describes the fact if the coin is inserted
or not

p2: describes the fact if the button is pressed
or not

p3: describes the fact if the coffee is given
out or not

Function

8/25

p1:Coin inserted=F

p2:Button pressed=F

p3:Coffee out=F

s1

p1:Coin inserted= T

p2:Button pressed=F

p3:Coffee out=F

s2

F1: Insert&receive coin

F1

𝑓: 𝑆𝑇 → 𝑆𝑇

ST represents a set of
possible state of affairs

Protocol

9/25

p1: F

p2: F

p3: F

s1

F1: Insert&receive coin

p1: T

p2: T

p3: T

s2

p1: T

p2: F

p3: F

s3

F1 F2

F2: Button press&coffee give out

P1: <F1,F2> P2: <F2,F1>

Requirement

10/25

p1: F

p2: F

p3: F

s1

p1: T

p2: T

p3: T

s2

p1: T

p2: F

p3: F

s3

F1 F2

F1: Insert&receive coin

F2: Button press&coffee give out

R:{s3} P1: <F1,F2>

Specification

11/25

p1: F

p2: F

p3: F

s1

p1: T

p2: T

p3: T

s2

p1: T

p2: F

p3: F

s3

F1 F2

F1: Insert&receive coin

F2: Button press&coffee give out

S: {F1,F2}

R:{s3} P1: <F1,F2>

Domain assumption

12/25

p1: F

p2: F

p3: F

p4: T

s1

p1: T

p2: T

p3: T

p4: T

s2

p1: T

p2: F

p3: F

p4: T

s3

F1 F2

F1: Insert&receive coin

F2: Button press&coffee give out

S: {F1,F2}

R:{s3} P1: <F1,F2>

D: {p4:T}

Put them all together

13/25

Functions:
F1: Insert&receive coin
F2: Button press&coffee give out

Specification (S):
S={F1,F2}

Protocol (P):
P=<F1,F2>

Propositions for the facts in the sate of affairs:
p1: describes the fact if the coin is inserted or not
p2: describes the fact if the button is pressed or not
p3: describes the fact if the coffee is given out or not
p4: power to the coffee machin is on

State of affairs (ST):
ST={s1, s2, s3}
s1={p1:F, p2:F, p3:F, p4:T}
s2={p1:T, p2:F, p3:F, p4:T}
s3={p1:T, p2:T, p3:T, p4:T}

Domain assumption (D):
D={p4:T}

Requirement (R):
R={s3}

Formula expression

• ∃S, R. fullfil S, R → ∃P. realize P, S

• ∃P. realize P, S →
 [∀event. execute(event, P)
 ∧ holds(D, time(event)) → post(event) ∈ R]

14/25

Ontology of software

15/25

Operation underlying a function

16/25

Computer program

17/25

Expression in:
high-level programming language

e.g. C/Python/Java

Expression in:
low-level programming language
e.g. assembly/machine language

Computer components:
e.g. CPU, memory, I/O devices

translated

operate_on

Abstract componts
in a shell

environment

operate_on

inderict_operate_on

Computer program

Ontology of program

18/25

Zave&Jackson’s theory
• 𝑫, 𝑺 ⊢ 𝑹

• R indicates the Requirement, usually understood as

early requirement

• S indicates the Specification, usually understood as

late requirement refined from early requirement

• D indicates the Domain assumption, usually

understood as the situations supporting the

specification to fulfill the requirement

But these are not the original ideas of Zave and

Jackson, terms are used ambiguously.

19/25

• 𝑫, 𝑺 ⊢ 𝑹

• Property (constrains on the T-BOX in DL)

 opative property

 R: requirement

 S: specification (implementable)

 indicative property

 D: domain assumption

The formula is based on the model theory, it could be

represented as a knowledge base through a DL.

20/25

21/25

World

Environment

Machine

Machine action,
shared

Environment
action, shared

Environment
action, unshared

R

S

D

22/25

Action: ac1, ac2,
ac3, ac4 ...

Agent: ag1, ag2,

ag3 ...

Domain

Language={insertCoin(x), receiveCoin (x),
 buttonPress(x), coffeeOut(x), follow (x, y),…}

A-Box={
insertCoint(ac1), receiveCoin (ac2),
buttonPress(ac3), coffeeOut(ac4),
Agent(ag1), Agent(ag2),…}

T-Box={
R: ∀𝑥. 𝑖𝑛𝑠𝑒𝑟𝑡𝐶𝑜𝑖𝑛(𝑥) → ∃𝑦. 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝐶𝑜𝑖𝑛(𝑦)
S: ∀𝑥. 𝑏𝑢𝑡𝑡𝑜𝑛𝑃𝑟𝑒𝑠𝑠(𝑥) → ∃𝑦. 𝑐𝑜𝑓𝑓𝑒𝑒𝑂𝑢𝑡(𝑦)
D: ¬∃𝑥. 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝐶𝑜𝑖𝑛(𝑥) → ¬∃𝑎𝑐2. 𝑐𝑜𝑓𝑓𝑒𝑒𝑂𝑢𝑡 𝑦
…
}

Possible Models
M1:
insertCoint={ac1},receiveCoin={ac2},
buttonPress ={ac3}, coffeeOut ={ac4},
follow={<ac1,ac2>,<ac3,ac4> …}

Comparasion

23/25

• After all, the requirement, specification and domain

assumption are constraints on the T-Box (on the

action instances), they constraint the possible

models according to the domain.

• Our proposal

 Requirement: set of desired state of affairs

 Specification: set of functions

 Domain assumptions: part of the state of affairs

 which holds during the execution of protocol

Conclusion

• A new definition of computer software

 several concepts are discussed

• Ontologies of computer software/program

 the relation between concepts are discussed

• An comparison with Zave&Jackson’s theory

 clarify the concepts and emphasize the

differences

24/25

Future work
• Social Artefact and Information Object

• Mental state underlying the requirement

 desire

 intention

• Identity of the software

 species level

 instance level

25/25

The end

