University e Trante
Depariment of Inermetion Engineering
ane Compuier Sclenee

Requirements and Architectural
Approaches to Adaptive Software
Systems: A Comparative Study

Konstantinos Angelopoulos, Vitor E. Silva Souza
Jodo Pimentel

angelopoulos@disi.unitn.it
vitorsouza@inf.ufes.br
jhcp@cin.ufpe.br

Outline

Motivation

Comparison Process

Case Study
Architecture-based approach
Requirements-based approach
Approach Comparison

Conclusions

Motivation

 Many approaches for software adaptation adopt
requirements or architectural models.

 We propose to conduct a comparison experiment that
answers questions such as:
— What aspects of a problem/solution do these types of
models capture?
— What are their advantages and disadvantages?

— Can we develop approaches to adaptation that use
both types of models synergistically? (future work)

Comparison Process

e Use Zanshin for requirements-based adaptation and
Rainbow for architecture-based adaptation.

e Use the Znn.com (news portal) case study, an exemplar
for the SEAMS community.

* Apply Zanshin and Rainbow to the case study.
 Compare solutions in terms of:
— common concepts adopted

— models used
— monitoring and effecting mechanisms

— adaptation mechanisms

Znn.com Case Study

Znn.com news portal | i
client2

Objectives: 7777

1. Low Cost | client3 |

2. High Fidelity

3. High Performance

Adaptation strategies for balancing traffic:
1.
2.

add/remove servers
increase/decrease fidelity

proxy

Serverl

Server2

Server3

Server4

Architecture-based Adaptation (Rainbow) 1/2

Baseline:
* Adopts feedback loop concepts from Control Theory.
* Architectural models (ACME) describe target system.

* Decision mechanisms (based on Utility Theory) to select
adaptation strategies.

e Script language (Stitch) to compose adaptation strategies

Overview:

Architecture Layer *

- System API Resource

Dlscovery

-.-------a.. ...

System
Layer

The components of the Rainbow framework [Cheng08]

,Architecture-based Solution

An ACME model describes the system’s a

Adaptation strategies in Stich:
SimpleReduceResponseTime:
reduce fidelity, if response time still
low then reduce again
SmarterReduceResponseTime:
add server, add server, reduce
fidelity until response time is low
ReduceOverallCost:

If response time low then remove servers
ImproveOverallFidelity:
If response time is low raise fidelity

rchitecture

strategy SmarterReduceResponseTime
[styleApplies&&cViolation]{

define boolean unhappy = numUnhappyFloat/
numClients > M.TOLERABLE_PERCENT_UNHAPPY;

t0:unhappy -> enlistServers(1)@[500/*ms*/]{
t1:(!cViolation) -> done;
t2:(unhappy) -> enlistServers(1)@[2000/*ms*/]{
t2a:(!cViolation) -> done;
t2b:(unhappy) -> lowerFidelity(2,100)@[2000/*ms*/|{
t2b1:(!cViolation) -> done;
t2b2(unhappy) -> do[1]t2;
t2b3(default) -> TNULL; //no more steps to take
}
}
}

Detect objective violations having as a reference the architectural model

Select strategy to apply
Apply Strategy

‘Requirements-based Adaptation (Zanshin) 1/2

Baseline:

* Awareness requirements: Define allowable thresholds
on the success/failure of other requirements

e System ldentification: define the parameters of the
system (CV and VP) and the impact over indicators (e.g.
serversA then performanceA\)

* Adaptation: a) Reconfiguration by changing parameter
values or b) Evolution requirements (e.g. relax a
constraint from 2.5sec to 3sec)

p

Requirements-based Adaptation (Zanshin) 2/2

’

Overview:

“Vanilla” _
Problem GORE Goal-oriented Design
s | Rccienens | —
Adaptation Specification :
[Concerns } Coding
) Awareness @
System Requirements Log
dentification (indicators)

@ System parameters Parsing
.

and how they Zanshin

affect indicators Framework
Reasoning

Adaptation strategies

(Evolution Requirements)

The Zanshin

Approach Strategy
Specification

Adaptation Requirements
Specification

a

* Elicit goals

A(AR 2/VP1) > 0 (3)
A(AR 3/VP1) < 0 (4)

* Define Strategies

e System Identification:

%Requirements-based Solution

AwReq AR1: softgoal Cost efficiency should never fail
|: Checked at: every second

A(AR 1/NoS) [0, maxServers] < 0 (1)

A(AR 3/NoS) [0, maxServers] > 0 (2)

Adaptation Strategy 1.1: Reconfigure(@)
I— Applicability Condition: there are no active sessions for AR3

AwReq AR2: softgoal High fidelity should never fail

Checked at: every request
Adaptation Strategy 2.1: ChangeParam(VP1, high)
I— Applicability Condition: there are no active sessions for AR3

Run news
portal
High
(AR3) rformance
Neverfail o\

[Response time]
under 2.5ms

Neverfail § Serve text- Serve low Serve high High resolution
(AR1) only content resolution resolution content unless

content content sp time >2.5 ARy £
Quality © Awareness Requireme
Softgoal - Task } —— Refinement
constraint - @ Control Variable

Experiment and Results

Infrastructure:

5 Apache servers (4 hosts, 1 proxy)
1 MySql db server

* Apache Jmeter load tester tool

We run 2 trials of a high traffic scenario (Slashdot effect) with and without
adaptation mechanisms:

 Rainbow [Cheng09]:
 |Improved the response time by 75%
 The throughput by 7%
« Utilities of the objectives were also increased
e Zanshin:
 Response time improved by 67.4%
e The throughput by 8.7%
* Awareness requirements failures were reduced

Comparison Overview

Both Approaches

work well in the study, adopt feedback loop concept, apply external control,
pre-conditions and post-conditions for adaptation strategies

Rainbow (Architecture-based) Zanshin (Requirements-based)

e Capture technical properties and e Capture strategic goals
constraints (reusable models) (stakeholders needs)

* Requirements are embedded in * Requirements are explicitly
adaptation strategies captured in a model

e Hierarchic adaptation language * Evolution requirements and
(automates administrative reconfiguration (offers dynamic
processes) strategy composition)

* (Quantitative adaptation using * (Qualitative adaptation using

utilities (human experience) control theory

Conclusions

* The architecture-based approach:
v’ captures better the properties of the target system
X requirements are implicitly represented
v’ captures precisely human administration process

X only automates control
v’ Utility Theory allows a quantitative control

* The requirements-based approach:
v’ captures explicitly the goals of the system
X doesn’t capture the technical limitations of the system
v allows the dynamic composition of adaptation strategies
v Qualitative control (useful when numbers are not available)

 The approaches include complementary features

References

[Cheng08] S.-W. Cheng, “Rainbow: Cost-Effective Software
Architecture-based Self-adaptation,” Ph.D. dissertation,
Carnegie Mellon University, 2008.

[Souzal2] V. E. S. Souza, “Requirements-based Software System
Adaptation,” PhD Thesis, University of Trento, Italy, 2012.

[Cheng09] S.-W. Cheng, D. Garlan, and B. Schmerl, “Evaluating
the Effectiveness of the Rainbow Self-Adaptive System,” in Proc.
of the ICSE 2009 Workshop on Software Engineering for
Adaptive and Self-Managing Systems. |EEE, 2009, pp. 132-141.

Ve

-

Thank You!

Questions?

D

P

rterReduceResponseTime
&& cViolation] {
xan unhappy = numUnhappyFloat/numClients > M.TOLERABLE_PERCENT_UNHAPPY;

) -> enlistServers(1) @[500 /*ms*/] {

on) -> done;

y) -> enlistServers(1) @[2000 /*ms*/] {

lation) -> done;

ppy) -> lowerFidelity(2, 100) @[2000 /*ms*/] {

iolation) -> done;

happy) -> do[1] t2;

fault) -> TNULL; // in this case, we have no more steps to take

70% 5

60% |

Thank

chart by amcharts.com

10 20 30

40

strategy SmarterReduceResponseTime
[styleApplies&&cViolation]{

define boolean unhappy = numUnhappyFlc
> M.TOLERABLE_PERCENT_UNHAPPY;

t0:unhappy -> enlistServers(1)@[500/*ms*/
t1:(!cViolation) -> done;
t2:(unhappy) -> enlistServers(1)@[2000/*n
t2a:(!cViolation) -> done;
t2b:(unhappy) -> lowerFidelity(2,100) @[2
t2b1:(!cViolation) -> done;
t2b2(unhappy) -> do[1]t2;
t2b3(default) -> TNULL; //no more steps
}
}

}

50 80 100 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 20000 30000 40000 50000 60000 70000 80000 90000

Baseline Distribution Baseline Quantiies [Test Quantiles

Comparison Overview

Both approaches adopt a closed loop model and apply external control.

Rainbow exploits architecture models that represent all the technical
details, while Zanshin exploits goal models that capture tasks and strategic
goals.

Rainbow uses hierarchically composed strategies (strategies = tactics =2
operators), while Zanshin uses reconfiguration and evolution requirements.

The adaptation in both cases is triggered by pre-conditions, defined in the

adapta @
portal
i .

Rainbo
Zanshir

Response time
[under 2.5ms] hat

Both af

. Neverfail Serve text- Serve low Serve high \ (High resolution
INSTruct™ (ri) < only content > resolution resolution) | content unless ATy the
pro bler content content / tesp time >2.5 (Aea’f)' '

— Refinement o Awareness Requirement
i @ Control Variable

AwReq AR1: softgoal Cost efficiency should never fail
Checked at: every second
Adaptation Strategy 1.1: Reconfigure(@)
|- Applicability Condition: there are no active sessions for AR3

AwReq AR2: softgoal High fidelity should never falil
j Checked at: every request
Adaptation Strategy 2.1: ChangeParam(VP1, high)
ail I— Applicability Condition: there are no active sessions for AR3

e sessions for AR3 Req AR3: softgoal High Performance should never fail
Checked at: every request
Adaptation Strategy 3.1: ChangeParam(VP1, low)
I— Applicability Condition: this is the first failure
Adaptation Strategy 3.2: Do Nothing
I— Applicability Condition: AS3.1 applied last, less than 1s ago
Adaptation Strategy 3.3: ChangeParam(VP1, text-only)
|— Applicability Condition: AS3.1 applied last, more than 1s ago
Adaptation Strategy 3.4: Do Nothing
e for ARG I Applicability Condition: AS3.3 applied last, less than 3s ago
Resolution Condition: AR3 was satisfied AND:
AS3.1 was applied last, more than 1s ago OR
AS3.3 was applied last, more than 3s ago

