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Expert Finding in RE

RE ⇒ Human- and knowledge-intensive process.

Broad mastering infeasible for a single person.
Stakeholder or analyst.

Need to elicit new requirements or refine existing one.
Need to find “people who know”: expert finding.

Actually “people who know the best”.
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Two Main Approaches (Mohebzada et al. [2012])
Lim et al. [2010, 2011], Lim and Finkelstein [2012]

Based on stakeholders’ recommendations.
Relate stakeholders to roles.
Weight regarding salience (i.e. “influence”) and social
network measures.
Role interesting, but salience abstract.
Superficial information on people’s knowledge.

Castro-Herrera and Cleland-Huang [2009, 2010]
Based on stakeholders’ contributions in a forum.
Identify topics through their common terms.
Relate stakeholders to the topics.
Deep information, but restricted to contributors.
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Research Problem

Lack
Poor identification of relevant experts for RE: too closed
(contributors) or too abstract (role + salience).

Research Objective
Improve expert finding in RE by designing a more comprehensive
approach, inspiring from existing ones.

Principal inspiration: consider roles, topics and concepts (prev.
terms) as the basic blocks to describe the knowledge of the
stakeholders.
Actual focus: identify the relevant blocks via the goal model and
exploit other sources to relate stakeholders to these blocks.
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Global Process

1 Extract roles, topics and concepts from the GM.

2 Relate them considering their inter-dependencies in the GM.
3 Relate stakeholders to them using other sources (e.g. forum,

recommendations).
4 Rank the stakeholders depending on the portion of the GM

that the analyst is focusing on.
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Goal Model Analysis: Roles, Topics, Concepts
From the goal model...
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Goal Model Analysis: Roles, Topics, Concepts
1) Extract roles:
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Goal Model Analysis: Roles, Topics, Concepts
2) Extract concepts (1/2):
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Goal Model Analysis: Roles, Topics, Concepts
2) Extract concepts (2/2):
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Goal Model Analysis: Roles, Topics, Concepts
3) Extract topics (1/2):
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Goal Model Analysis: Roles, Topics, Concepts
3) Extract topics (2/2):
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Goal Model Analysis: Roles, Topics, Concepts
4) Extract relations (1/4):
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Goal Model Analysis: Roles, Topics, Concepts
4) Extract relations (2/4):
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Goal Model Analysis: Roles, Topics, Concepts
4) Extract relations (3/4):
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Goal Model Analysis: Roles, Topics, Concepts
4) Extract relations (4/4):
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Goal Model Analysis: Roles, Topics, Concepts
5) Build the graph:
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Complete the Graph: Stakeholders
Exploit sources relating stakeholders to the blocks (nodes):

Forum: stakeholder-concept, stakeholder-topic
Recommendations: stakeholder-role
List of employees: stakeholder-role
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Improve the Graph: Amount of Information

More a relation appear, stronger it is
stakeholder represents +/- a role.
stakeholder know +/- about a topic.
stakeholder know +/- a concept.

More a source is up-to-date, stronger its relations are
Goal model, list of employees: updated vs. obsolete.
Forum’s post, recommendations: recent vs. old.

Open question: How to quantify one source regarding the others?
Let assume that we have a reliable weighted graph for now...
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Probabilistic Model: Markov Network

Nodes → binary random variables Xi ∈ {>,⊥}.
Is the role/topic/concept/stakeholder wanted or rejected?

Relations → potential functions fi ,j(Xi , Xj) ∈ R+.
Ex: fi,j(>, >) = weight of the relation between Xi and Xj ,
fi,j(>, ⊥) = fi,j(⊥, >) = fi,j(⊥, ⊥) = 0.

P(X ) =

∏
i,j fi,j (Xi ,Xj )

Z (Z = normalization factor)
Partial + conditional probabilities: P(X ′ ∈ X ), P(X1|X2).

Ex: P(PhilipS = >|Manage privacyT = >, participantR = >)

Stakeholders ranking
P(S1|Q) > P(S2|Q)⇒ S1 > S2 for query Q.
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Markov Network Engine: libDai

free and open source1 C++ library.

Implements various inference methods for discrete graphical
models.
Manage approximation with timeout for heavy computations.
In the 3 winners of the UAI 2010 Approximate Inference
Challenge2

Program used for the experiments.

Main interest: compute loops!

1http://cs.ru.nl/~jorism/libDAI/
2http://www.cs.huji.ac.il/project/UAI10/
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Queries

Queries tested in ℘(R ∪ T ∪ C):
‖Q‖ = 0 (Q = ∅).
‖Q‖ = 1, 2, 3.
Exhaustive test (all combinations) = 176 queries.
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Parameters of the Network

Different amount of info (including no info).

Different potential functions:
identity (classic + normalised + semi-normalised)
identity + prior (classic + normalised + semi-normalised)
weight of evidence: w = p

1−p (classic + symmetric).

Different weights for different relations (e.g. S-T > R-T).
High weight for trivial topic-concept relations.

Ex: Manage privacyT → Manage privacyC .
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Assumptions (Gold Standard)

No data (network or query)
⇒ all the elements have the same rank.

S1 is stronger related to B ∈ R ∪ T ∪ C than S2
⇒ S1 > S2 for Q = {B}.
B1 related to B2, S1 related to B1 and not B2, S2 related
(equally) to B2 but not B1
⇒ S1 > S2 for Q = {B1}, S1 < S2 for Q = {B2}.
Q1 = {B1}, ..., Qn = {Bn} have common partial rankings
⇒ Q = {B1, ..., Bn} have the same partial rankings.
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Results... to Be Continued

Data generated, but not analyzed yet. However, a quick reading
allows to notice some points:

X Empty network = no ranking, regardless of the query and the
parameters.

X With data, the assumption on composed queries is generally
satisfied.

× But the assumption on empty query is generally NOT
satisfied. (close world representation?)

× With data, only 1 case satisfies all the applicable assumptions
(symmetric WoE instead of classical identity + prior)
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Summary:
Extract roles, topics and concepts from a GM.
Extract their relations from the GM.
Relate stakeholders using other sources.
Translate graph in a Markov network.
Rank stakeholders based on probabilities.
Experiments setting.

Future work:
Analyse experiments’ results.
Fix and improve.
Look at other techniques able to exploit the graph.
Develop process to integrate specific techniques for concept
extraction.
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Thanks for your attention.

Questions?
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