
What is software?

Speaker: Xiaowei Wang

Supervisor: John Mylopoulos, Nicola Guarino

University of Trento, Italy
Laboratory for Applied Ontology (ISTC-CNR), Italy

xwang@disi.unitn.it

Mar. 27th, 2013 1/20

Presenter
Presentation Notes
Greetings: Good morning, everyone. Thanks for coming.
General introduction:
Long time no see, I miss you a lot, and I hope everything goes well.
I was back in Trento last Thursday, and I found it was my turn to give a speech, well it may be a perfect jump start for me after the qualifying exam.
As I am just back, nothing new from me currently. But maybe I can focus on one aspect of my research approach today. As the title shown “What is software”, I am trying to present some ideas of the concept of software today.

Outline
1 • Introduction

2 • Literature Work

3 • Research Baseline

4 • Research Approach

5 • Conclusion

2/20

Presenter
Presentation Notes
Here is a brief outline:

1. Introduction

Software has been used in every
aspect of human activities.

• Huge scale

• Complex structure

• Crucial system

Software engineering brings the
engineering methodologies into the
development of software.

Section 1. Introduction >> Section 2 >> Section 3 >> Section 4 >> Section 5 3/20

Presenter
Presentation Notes
The prevalence of software:
In modern societies, software has been widely and heavily used in almost every aspect of human activity, both to increase productivity and improve quality of life.

The study of software engineering:
To fulfill the growing requirements from the societies, software systems are getting huge in scale, getting complex in structure, and getting crucial in human life.
To manage these new requirements, people start to bring in the traditional engineering methodologies into the development of software, replacing the personal art of programming.

• Naur and Randell,1968
The phrase ‘software engineering’ was deliberately chosen as being
provocative, in implying the need for software manufacture to be based
on the types of theoretical foundations and practical disciplines.

• Panas,1997
Software engineering should be classified as a branch of engineering
instead of a branch of computer science.

• Osterweil, 2008
What is software?

The meaning of
“software + engineering”

Section 1. Introduction >> Section 2 >> Section 3 >> Section 4 >> Section 5 4/20

Presenter
Presentation Notes
The phrase “software engineering” was firstly proposed by Naur and Randell in 1968.
It was deliberately chosen as being provocative, in implying the need for software manufacture to be based on the types of theoretical foundations and practical disciplines.
in the later years, this term was widely used, and many researches have been done in the community.

The marriage of these two terms was questioned frequently in the literature, for example, in 1997, Panas stated that instead of being a branch of computer science, it was more likely to be classified as a branch of engineering.

People usually focus on the engineering part of this phrase, and the software as the subject which we are always working on is seldom questioned. Osterweil explicitly raised this topic in 2008, by asking the question “What is software?”.

• Algorithm (e.g. a bubble sorting algorithm)
• Source code (e.g. encoded in Java/C)
• Realization of source code (e.g. the code stored on a hard disk)
• Running process of algorithm (e.g. sorting process running in

a computer)

 Specification document?
 Design document?
 Requirements?

We try to provide a unified concept of software.

Understandings of software

Section 1. Introduction >> Section 2 >> Section 3 >> Section 4 >> Section 5 5/20

Presenter
Presentation Notes
To answer the question of “what is software”, we summarized several historical works describing the concept of software, and it could be characterized from many perspectives.
It could be an algorithm, such as a bubble sorting algorithm;
It could be a piece of source code, such as the bubble sorting algorithm encoded in Java or C;
It could be the realization of source code, which means the source code written in paper, or stored in a hard disk;
It also could be a running process in a computer;

So, here comes the question that what do we really mean when we refer to the term software?
Furthermore, could specification documents, design documents and requirements be counted as software?

To get a clearer understanding of software engineering, we need to get a better understanding of software itself.
And, we try to propose a unified concept of software, which will be introduced in research approach section.

2. Literature Work

Section 1 >> Section 2. Literature Work >> Section 3 >> Section 4 >> Section 5 6/20

Osterweil: multiple kinds of software

• Software is non-physical and intangible, containing
instructions which manages and controls of tangible entities.

• Processes (e.g. waterfall model process)
• Laws (e.g. copyright law)
• Recipes (e.g. how to cook an apple pie)

Section 1 >> Section 2. Literature Work >> Section 3 >> Section 4 >> Section 5 7/20

Presenter
Presentation Notes
Referring to the term “software”, besides “computer software”, Osterweil believes there are other kinds of software.
Informally, he characterizes software as something non-physical and intangible, and a software instance could be executed to manage and control tangible entities.�
Here are some examples of other kinds of software
It could be processes, such as waterfall model process for software developing.
It could be laws, such as copyright law defines that plagiarism is not allowed.
It could be cooking recipes, such as the instructions of how to cook an apple pie.

Eden: program language expression

• Software is an expression “S” based on a turing-complete
programming language “L”.

• S should be a well-formed expression in L.
• S should be accepted by a compiler.
• S should support a non-trivial set of instructions (expressed in

a turing-complete language).

Section 1 >> Section 2. Literature Work >> Section 3 >> Section 4 >> Section 5 8/20

Presenter
Presentation Notes
Although Osterweil’s idea is revealing, the core concept “computer software” is still missing.
Eden states another definition that software is an well-formed expression based on a turing-complete programming language.

It emphasizes that software should be a well-formed expression in L,
and this expression could be accepted by a compiler,
and to differentiate the computer software from others, it should support a non-trivial set of instructions, which could be expression in a turing-complete language.

Obelrle: ontology of software

Section 1 >> Section 2. Literature Work >> Section 3 >> Section 4 >> Section 5 9/20

Presenter
Presentation Notes
Oberle believes that the term software is overloaded and refers to at least three different concepts: SoftwareAsCode, ComputationalObject and ComputationalActivity

SoftwareAsCode (OIO:InformationObject):
The encoding of an algorithm specification in some kind of representation, and he recognizes it as software in his ontology.
ComputationalObject (OIO:InformationRealization):
This SoftwareAsCode could be realized in physical hardware (e.g. memory, hard disk), this realization is not the hardware itself, but some structure depending on the hardware.
ComputationalActivity (DOLCE:Predurant):
On the other hand, this ComputationalObject could be executed as ComputationalActivity, which is a running process in the computer.

As a summary, software is an expression of instructions containing plans and the tasks which the computer needs to follow.
These instructions can not be directly involved in the final computational activities, it should be transferred into a executable realization on a hardware to participate in a running process.

Ruttenberg: Information entity

Information Entity

Section 1 >> Section 2. Literature Work >> Section 3 >> Section 4 >> Section 5 10/20

Presenter
Presentation Notes
As Obelrle describes software as information entity, Ruttenberg shows us an different interesting example illustrating the concept of information entity.
for example we have an small white mouse #a1233,
we recognize it as a physical object, and it has a length,
the measurement of this length is the information entity we are looking for,
it has Centimeter as the unit, and has value 3.7 according to the unit.

Ruttenberg: Information entity,
concretized

Section 1 >> Section 2. Literature Work >> Section 3 >> Section 4 >> Section 5 11/20

Presenter
Presentation Notes
Now we try to store this information of length in somewhere, and we got a hard disk and a piece of paper.
With the hard disk, we can concretize the length information as pattern of magnetic domain in a hard disk, (in binary code expression).
with the paper, we can concretize the length information as pattern of ink in a paper, (in natural language expression).
The idea is that, the existence of the information does not depends on the expression types and hardware types.

3. Research Baseline

"I have a pet at home."
"Oh, what kind of pet?"

"It is a dog."
"What kind of dog?"

"It is a St. Bernard." "It is full grown." "It is brown and white."
"Grown up or a puppy?" "What color is it?" "Why didn't you say you had a

full-grown, brown and white
St. Bernard as a pet in the first
place?"

Section 1 >> Section 2 >> Section 3. Research Baseline >> Section 4 >> Section 5 12/20

Presenter
Presentation Notes
Following the literature works, here I try to bring the research baseline.
Let’s first have a look at an short conversion between a little boy and a little girl.
The boy said …
The girl said …

Richards: Semiotic triangle

Section 1 >> Section 2 >> Section 3. Research Baseline >> Section 4 >> Section 5 13/20

Presenter
Presentation Notes
Based on the conversion in last slid, here comes to the key point “semiotic triangle”.
It was proposed by Ogden and Richards to express the communication process between agents.
A speaker may say a word “Dog” to stand for a concept in her own mind, and this concept refers to real animal dogs in the world;
then, this symbol/voice may invoke a concept in the listener’s mind, and this concept may help the listener to point out the real animal dogs which the symbol/voice is intended to refer to.

4. Research Approach

Section 1 >> Section 2 >> Section 3 >> Section 4. Research Approach >> Section 5 14/20

Presenter
Presentation Notes

Se start from the semiotic triangle, and we tries to interpret software through this triangle.

An example is illustrated in the this Figure. A sorting algorithm could be interpreted as a concept; this algorithm could be encoded by any programming language syntax (e.g. Java or C); finally, this algorithm could be materialized as a sorting process in a computer.

Software triangle

Section 1 >> Section 2 >> Section 3 >> Section 4. Research Approach >> Section 5 15/20

Presenter
Presentation Notes
According to the semiotic triangle, similarly, we propose a software triangle, explicitly distinguishing software representation (Syntax), software concept (Concept) and software system (Referent).

Software abstraction layers

Section 1 >> Section 2 >> Section 3 >> Section 4. Research Approach >> Section 5 16/20

Presenter
Presentation Notes
and each angle of this software triangle could be extended into multiple abstraction layers.

Consistency in vertical

Section 1 >> Section 2 >> Section 3 >> Section 4. Research Approach >> Section 5 17/20

Presenter
Presentation Notes
Here is the illustration of our idea, these abstraction layers are consistent in both vertical and horizontal directions.

For the vertical direction, a software could be represented in a goal model with i* framework, or a class model with UML, or source code in C or Java.

Although they are in different abstraction layers, they are consistent through these layers.

e.g. an email system

Consistency in horizontal

A goal:
managing

emails
Design modules:
email creating;

email receiving;
email sending

Source code fulfilling the
design

An email
application

Activities:
email creating;

email receiving;
email sending

The processes running in
a computer

Software Representation (Syntax) Software System (Referent)

Section 1 >> Section 2 >> Section 3 >> Section 4. Research Approach >> Section 5 18/20

Presenter
Presentation Notes
For the horizontal direction, we can take the example of an email system to illustrate.
-The software might be represented by a goal of managing emails, or by design modules of email creating, receiving and sending which can fulfill the goal, or by source code fulfilling the design;
-Correspondingly, software system (Referent) could be materialized as an email application, or activities of creating, receiving and sending emails, or the processes running in a computer.
In summery, as the first step, we try to provide an formal ontology of software according to the semiotic triangle and software abstraction layers.

Further thought on the basline

Section 1 >> Section 2 >> Section 3 >> Section 4. Research Approach >> Section 5 19/20

• Semiotic triangle
-- Ogden and Richards, 2001

• Ontology of requirement
-- Jureta and Mylopoulos, 2009

• Ontology of artefactual object
-- Gurino, 2012

Requirement

Layer

Design Layer

Source code layer

Presenter
Presentation Notes
Besides the semiotic triangle, according to the abstraction layer, there are other two starting points.
the work of Jureta and Mylopoulos [19], a core ontology of requirement, could be reused in the requirement layer in the future work.
the work of Guarino [13], an ontology of artefactual object, might be reused in the design layer in future;

5. Conclusion

• Several literature works discussing the concept of software are
illustrated.

• We try to provide a unified concept of software, by implying
the idea of semiotic triangle and software abstraction layers.

• More detail analysis should be taken out, the contribution of
the first step of my research could be an ontology of software.

Section 1 >> Section 2 >> Section 3 >> Section 4 >> Section 5. Conclusion 20/20

The end

References

• [1] Eden, A.H. and Turner, R. 2007. Problems in the ontology of computer
programs. Appl. Ontol. 2, 1 (2007), 13–36.

• [2] Guarino, N. 2012. Artefactual Systems , Functional Roles and System
Components. 1101–1116.

• [3] Jureta, I.J. et al. 2009. A core ontology for requirements. Applied Ontology. 4,
3 (Jan. 2009), 169–244, DOI= 10.3233/AO-2009-0069.

• [4] Naur, P. et al. 1969. Software engineering : report on a conference sponsored
by the NATO Science Committee, Garmisch, Germany, 7th to 11th October 1968.
(Brussels, 1969).

• [5] Oberle, D. et al. 2009. An Ontology for Software. S. Staab and D. Rudi Studer,
eds. Springer Berlin Heidelberg. 383–402, DOI= 10.1007/978-3-540-92673-3_17.

• [6] Ogden, C.K. et al. 2001. The Meaning of Meaning: A Study of the Influence of
Language Upon Thought and of the Science of Symbolism. Routledge.

• [7] Osterweil, L.J. 2008. What is software? Autom. Softw. Eng. 15, 3-4 (2008), 261–
273.

• [8] Parnas, D. 1997. Software Engineering: An unconsummated marriage
(extended abstract). Software Engineering — ESEC/FSE’97 SE - 1. M. Jazayeri and H.
Schauer, eds. Springer Berlin Heidelberg. 1–3, DOI= 10.1007/3-540-63531-9_1.

	What is software?
	Outline
	1. Introduction
	The meaning of�“software + engineering”
	Slide Number 5
	2. Literature Work
	Osterweil: multiple kinds of software
	Eden: program language expression
	Obelrle: ontology of software
	Ruttenberg: Information entity
	Ruttenberg: Information entity, concretized
	3. Research Baseline
	Richards: Semiotic triangle
	4. Research Approach
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	5. Conclusion
	The end
	References

