
Feng-Lin Li 1, John Mylopoulos 1 , Lin Liu 2,

1: Dept of Information Engineering and Computer Science,
University of Trento, Italy

2: Software School, Tsinghua University, China

2012-12-20

1

Outline
 Background
 Problem Statement
 The Feature-Oriented Approach
 A Case Study – EShop
 In Summary

2

Service Evolution
 Service Evolution: a continuous process of development of

a service through consistent and unambiguous changes to
requirements and domain assumptions.

 Key Challenges: Forward compatibility: a guarantee that
an older version of a client application should be able to
interpret and use newer message/data formats introduced
by the service.

3

Related Work
 Taxonomy of evolutionary changes
 Structural (interface), Behavior (interaction protocol), QoS

 Versioning
 Design Pattern
 Dynamic binding, Client transparency

 Tool (Adaptor, Proxy)
 Model and Theory
 Type theory

4

Observations
 Evolutionary changes are closely related to service interface

(signature) and behavior (interaction protocol) [Li12].
 Current work

 Focuses on the incompatibility between clients and servers
 Pays little attention to change propagation from

requirements to services

5

Starting Point: Requirements
 D, S |= R [Jackson&Zave95]

 D: domain assumption, S: specification, R : requirement
 E.g., Task “Process Credit Card Payment”(S),

Domain Assumption “Customer owns a Credit Card with
Available Credits”(D)

|= Goal “Item(s) be Paid Online”(R).

Problem Statement
 Prerequisite: D, S |= R
 Propagation:

 (Requirements Change) if R changes to R’, how to find a new
specification S’ so that D, S’ |= R’ holds?

 (Environment Change) if the domain assumption D changes to D’,
how to find a new specification S’, so that D’, S’ |= R still remains
true?

 Traceability:
 (Specification Change) if specification S changes to S’, does the

entailment D, S’ |= R still remain true?

7

The Feature-Oriented Approach:
A Motivating Example

 The evolution of turtle shell
 Odontochelys (oldest turtle)
 The turtle shells formed from the underside - plastron (chest) first
 And then grew bony extensions of ribs and bone formation above

backbones
 Existing features are modified and put into second use.

8

Services as Feature Configurations
 A service consists of features (functional, QoS)

The Feature-Oriented Approach
 Methodology

 Framework

Fully Refined Goal model
(Tasks, Domain Assumptions,
Quality Constraints)

Features

Fully Refined Feature model
Identifying

Refining
(Decomposition,
Characterization,
Specialization)

Deriving
Service Operation

Specifying
Service
Interaction

Service Behavior Model

Model Transformation & Refinement Specification Derivation

The Feature-Oriented Approach
 Methodology

 (1) Identify features from fully refined goal model [Yu08]
 An inner goal could be identified as an abstract feature
 Regarding a leaf (operational) goal go, a), b) and c) could be a

concrete feature
 a) an OR-decomposed task of go;
 b) a combination (all/partial) of the AND-decomposed tasks of go;
 c) a or a cohesive set of quality constraint(s).

 (2) Refine identified feature [Kang90]
 Decomposition: a “Checkout” feature can be decomposed into

“Pricing” and “Taxation”
 Specialization : the “Taxation” could be specialized to “Fixed-Rate

Taxation” and “Rule-Based Taxation”
 Characterization: the “Fixed-Rate Taxation” feature has attributes

“Amount” and “Tax-rate”

11

The Feature-Oriented Approach
 Methodology

 (3) Deriving operations from feature model [Nguyen 10]

12

The Feature-Oriented Approach
 Methodology

 (4) Specifying Service Behavior over Operations[Rinderle06][Broy07]
 On deriving the operations, we need to model service behavior, i.e.

service interaction protocol (messaging)
 Event - Condition- Action language

 Ti (label): event [guard] / action [effect]
 Event and action are service operations in general
 Guard are conditions, based on which corresponding action would

perform
 Effect usually leads to an proper state
 E.g. T1 : ?taxation [true]/ calculateTaxValue() [tax value

returned]
 On receiving the taxation request and relevant parameters

(?taxation), the taxation service calculate and send back the
corresponding tax value (calculateTaxValue()), then the service
would transit into the tax value returned state.

13

The Feature-Oriented Approach
 Brief Sum-Up
 Having a refined goal model (assumption),

a) Identify feature from fully refined goal model
b) Refine identified features
c) Derive refined feature model to service operation
d) Specify service behavior over operations

 Evolution?
 When requirements change, it will be reflected in goal model
 Then feature could be changed, added or deleted correspondingly
 Service operations would evolve synchronously
 Concurrently, service interaction protocol would evolve

14

A Case Study - EShop
 EShop

 It is owned by a store selling different kinds of items, such as
book, audio tape and CD.

 Roles: customer, merchant, bank, and shipper. For each role, there
would be corresponding software service(s) play it (we omitted the
taxation service here).

 Customers are able to query items and specify their orders;
merchant could handle orders, use the bank service to deal with
payment transactions and depend on shipper to deliver physical
items to customers.

15

A Case Study - EShop
 Goal model

16

Goal
dependency

 A partial feature model and service class
 Identify features from goal model
 Derive service operations from refined feature model

A Case Study - EShop

17

 A possible process scenario
 Specify service interaction over messaging

A Case Study - EShop

18

 The behavior model of the shipping service
 Specify service interaction over service operations

A Case Study - EShop

19

 An evolution scenario
 When a customer finds out that the items are broken, he/she may

won’t accept the items and assign the receiving note.
 The changed requirement is shown in goal model

A Case Study - EShop

20

 The changed feature model
 A new feature “product return” would be identified
 Correspondingly, a new service operation would be derived

A Case Study - EShop

21

New
feature

HandleProductReturns(productOrder,
shipOrder,
returnForm);

 The evolved service behavior model
 Evolve the behavior model when operations change

A Case Study - EShop

22

 Key Challenges
 How to derive service operations from feature rationally?
 How to specify service behavior over operations systematically?

 Contributions:
 Being different from the current work that focus on the interaction

compatibility between service and clients in evolution, we center on
the change propagation from requirement to service.
 What is going to evolve
 How will it evolve

In Summary

23

 Future Work:
 How to resolve the influence of service evolution?
 How to handle the evolution of non-functional feature?
 How to deal with the change traceability problem?

In Summary

24

 [Li12] Feng-Lin Li, Lin Liu, John Mylopoulos. "Software Service Evolution: A Requirements
Perspective" In Computer Software and Applications Conference Workshops (COMPSACW),
2012 IEEE 36th Annual, July 16-20, 2012, pp 353-358

 [Jackson&Zave95] M. Jackson and P. Zave, “Deriving specifications from requirements: an
example,” in Software Engineering, 1995. ICSE 1995. 17th International Conference on, 1995, p.
15–15.

 [Yu08] Y. Yu, J. C. . do Prado Leite, A. Lapouchnian, and J. Mylopoulos, “Configuring features
with stakeholder goals,” in Proceedings of the 2008 ACM symposium on Applied computing,
2008, pp. 645–649.

 [Kang90]K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and A. S. Peterson, “Feature-oriented
domain analysis (FODA) feasibility study,” DTIC Document, 1990.

 [Nguyen 10] T. Nguyen and A. Colman, “A Feature-Oriented Approach for Web Service
Customization,” in Web Services (ICWS), 2010 IEEE International Conference on, 2010, pp. 393–
400.

 [Broy07] M. Broy, I. H. Krüger, and M. Meisinger, “A formal model of services”, ACM
Transactions on Software Engineering and Methodology (TOSEM), vol. 16, no. 1, p. 5-es, 2007.

 [Rinderle06] S. Rinderle, A. Wombacher, and M. Reichert, “Evolution of process
choreographies in DYCHOR”, On the Move to Meaningful Internet Systems 2006: CoopIS,
DOA, GADA, and ODBASE, pp. 273-290, 2006.

Reference

Q & A

26

	Requirements-Driven Software Service Evolution
	Outline
	Service Evolution
	Related Work
	Observations
	Starting Point: Requirements
	Problem Statement
	The Feature-Oriented Approach:�A Motivating Example
	Services as Feature Configurations
	The Feature-Oriented Approach
	The Feature-Oriented Approach
	The Feature-Oriented Approach
	The Feature-Oriented Approach
	The Feature-Oriented Approach
	A Case Study - EShop
	A Case Study - EShop
	A Case Study - EShop
	A Case Study - EShop
	A Case Study - EShop
	A Case Study - EShop
	A Case Study - EShop
	A Case Study - EShop
	In Summary
	In Summary
	Reference
	Q & A

