

Design Secure STS through Multi-views Security Analysis

Tong Li 2012.11.08 @Ofek

Syllabus

- Motivation
- Research Problem
- Research Approach
- Illustration
- Related work
- Conclusion

Motivation

Socio-Technical System

Motivation

- However...
 - a piecemeal fashion
- Case: How do you make your paper secure?
 - A: set a password to the file
 - B: use some anti-virus software
 - C: lock the computer
 - ...

Research Problem

- Design secure STS through multi-views
 - Business process view
 - Application view
 - Infrastructure view

Research Problem

 D_{inf} , $S_{inf} \vdash R_{inf}$, SR_{inf}

 D_{app} , $S_{app} \vdash R_{app}$, SR_{app}

Research Problem

Research Approach

- Research structure
- Research task

Research Approach

- Research Baseline
 - Requirement goal model (KAOS)
 - Business process model (BPMN)
 - Attack model (Attack tree)
 - Risk model (CORAS)
 - Security pattern
 - State diagram (UML)
 - Deployment diagram (UML)

- Smart Grid
 - Traditional power grid enhanced by ICT
 - Two-way
 communication
 through smart meters

System requirement model (R,SR)

• System requirement model (R,SR)

+ | +

Illustration

• Business process model (D_{bp} , $S_{bp} \vdash R_{bp}$)

• Generate security solution for BP $(D_{bp}, S_{bp} \vdash R_{bp}, RS_{bp})$

 $D, S \vdash R, SR$

 \bigcirc D_{bp}, S_{bp} \vdash R_{bp}, SR_{bp}

Illustration

4) D_{app}, S_{app} – R_{app}, SR_{app}

• Requirement goal model for application 6 Dinf, Sinf - Rinf, SRinf

(Rapp, RSapp)

+ +

Illustration

• Generate state diagram for application design (D_{app} , $S_{app} \vdash R_{app}$)

 $D, S \vdash R, SR$

(2) D_{bp}, S_{bp} \vdash R_{bp}, SR_{bp}

4 Dapp, Sapp — Rapp, SRapp

Illustration

• Generate state diagram for application design (D_{app} , $S_{app} \vdash R_{app}$, RS_{app})

Research Steps

- Given a socio-technical system and a set of security requirements, design through a systematic process a security solution.
- Given a set of organizational objectives and security requirements, design a secure socio-technical system that fulfills organizational objectives and security requirements.
- Given a secure socio-technical system and some required changes, derive a new system that accommodates the changes, and continues to meet organizational objectives and security requirements.

Related work

- Misuse/abuse case, Abuse frame, Anti-goal
- i* based security analysis(Elahi, Liu, Mayer)
- UMLsec, SecureUML
- Secure Tropos (Mouratidis, Zannone)
- Kruchten, P. Architectural blueprints: The
 "4+1" view model of software architecture.

Conclusion

- Security should be considered from multiview to provide an all-round security solution.
- Design secure STS through multi-view, which consists of business process, application and infrastructure.

Thank you!

Questions?