Department of Information Engineering and Computer Science DISI

From Requirements to Architecture for Adaptive Software Systems

Re-Seminar

November 2nd 2012

Agenda

- Introduction
- The Requirements Architecture Gap
- Motivating Scenario
- Requirements vs Design
- Conclusions
- Future Work

Introduction

- Fact: Adaptation is a process that takes place when changes happen.
- Fact: When adaptation takes place changes are needed.
- RQ: How do we model and govern these changes ?
- A: Provide a top-down development approach that captures the adaptation concept starting from requirements level, then design and finally architecture.

Bridging The Gap

Motivating Scenario

Znn.com: An news portal with multimedia content.

When the load is high there are 2 possible actions:

- 1. Add more servers
- 2. Switch to textual mode

When balance is achieved reverse adaptation processes take place to reduce the operational cost and increase the fidelity.

Requirements Approach (1)

Requirements Approach (2)

Differential Equations

- Δ (AR1/NoS)[0,maxSrv] < 0
- Δ (AR3/NoS)[0,maxSrv] > 0
- Δ(AR2/LoR)[lv1→ lv2 → lv3] < 0
- Δ (AR3/LoR)[lv1→ Lv2 → lv3] < 0

Control Variables:

- NoS: Number of Servers
- LoR: Level of Resolution

Adapt Cases Baseline

Adapt Cases - Monitor

- Monitor Definition: Represents Monitor Concepts.
- Corridor: Defines valid values of adaptation context elements.
- Pulse: Represents value or status of monitored element; may aggregate values.
- **Event:** Indicates change in adaptation context

Adapt Cases – Adaptation Action

- Actor: Performs or is involved in the Adapt Case.
- Conditions: Defines Pre- and Postconditions and Invariant.
- Adaptation Action: Reacts to event and defines alternative actions.
- Alternative: Description of concrete adaptation.

Adapt Cases – Adaptation Context

- Adaptation Context: Overall context, the system is located in.
- **System:** View on the system that is adapted by the Adapt Case.
- Component: Represents logical system component.
- **Data Entity:** Describes data stored by the system.
- **System Context:** View on the context, the system is acting in.
- System Context Element: Any kind of element in the system context.

Adapt Cases – Znn.com (1)

Adapt Cases – Znn.com (2)

Adapt Cases – Znn.com (3)

```
def IncreaseNumberOfServerInPool()
component->select (cmp|cmp.type =
  "LoadBalancer").addServerToPool()
def SwitchToTextualMode()
  component->select(cmp|cmp.type =
      "ContentPresentationController")
   .setContentFidelity(text);
def DecreaseResponseTime.run()
  if ServerPool.isMaximized() then
    SwitchToTextualMode.run()
 else
    IncreaseNumberOfServerInPool.run()
 endif
```

```
def DecreaseNumberOfServerInPool()
  component->select(cmp|cmp.type =
    "LoadBalancer").removeServerFromPool()

def SwitchToMultimediaMode()
  component->select(cmp|cmp.type =
        "ContentPresentationController")
    .setContentFidelity(multimedia);

def DecreaseServerLoadCapacity.run()
  if ContentPresentationController.isHighFidelity
        () then
        DecreaseNumberOfServerInPool.run()
  else
        SwitchToMultimediaMode.run()
  endif
```

Comparison Points

Requirements Approach

- 1. Follows the MAPE model
- 2. Monitoring the Awareness Requirements
- Awareness Requirements operationalized with OCL
- Variability is expressed with Variation Points
- 5. Control Variables that compose the factors to be adjusted. (can be added to the components)
- Differential equations between input and output

Adapt Cases

- 1. Follows the MAPE-K model (adds context)
- 2. Monitoring the Pulses
- 3. Adaptation actions/conditions are expressed in OCL
- 4. Variability is expressed with Alternatives
- 5. Express technical details about the system (e.g. components)

Conclusions

- Links between Requirements and Design exist
- Both approaches are based on control feedback loops
- Design gives a more detailed view of the final system
- Adapt Cases model the explicitly the adaptation process by extending an already widely accepted language (UML)

Future Work

- Add Evolution Requirements to the Design
- Use BPMN/BPEL to model the behavior aspect of the adaptation process
- Use TROPOS to capture also social aspects of the design instead of plain goal models
- Link Adapt Cases with Rainbow
- Final Step: Develop a framework that unifies Requirements, Design and Architecture

QUESTIONS? ODESLIONS

THANK YOU! IHYUK JOO!