Developing an Ontology of Software
Evolution

Preliminary research results

Xiaowel Wang

ICT International Doctoral School,
University of Trento, Italy
xwang@disi.unitn.if

Thursday, July 05, 2012 @ 1/24

Outline

e Motivation

e Basic intuitions

* Concept of “Software”

* Concept of “Species”

* Evolution, Maintenance and Adaptation

e Conclusion

e Future work

Thursday, July 05, 2012 @ 2/24

Motivation

People rely on software
heavily

Software changes rapidly

No universally shared
concepts for software change

Thursday, July 05, 2012 @ 3/24

Different kinds of software change

A. Corrective maintenance

1. Processing failure
2. Performance failure
3. Implementation failure

Godfrey's
maintenance

Swanson's B. Adaptive maintenance
maintenance

1. Change in data environment
2. Change in processing environment

C. Perfective maintenance

Godfrey's evolution

1. Processing inefficiency
2. Performance enhancement
3. Maintainability

As Godfrey states: Maintenance suggests preservation and fixing,
whereas evolution suggests new designs evolving from old ones

° Thursday, July 05, 2012 @ 4/24

Basic intuitions

Evolution only happens at species level
Software Specifications = Software Species (laws)
Software Species = Software Version (generally)

Software (copy) = individual

Changes in software species are counted as
software evolution

Thursday, July 05, 2012 @ 5/24

A example for intuition

(a version could be
MSW-V3 recognized as a software
. species)
oS Derivejfrom

: /
\ '
., /
N)
s _.——"TAll the instances
------------------ belong to version
MSW-V3
- 74‘_—f _\\ MSW: Microsoft Word;
(i /\ MSW-V3: Microsoft Word Verstion 3
N ~ » ,_/"/

N —— ¢ — ¢ — ¢ — ¢ —

Thursday, July 05, 2012 @ 6/24

A formula according to requirement engineering

Application Domain Machine Domain

C - computers

P - programs

(D,S - R)AN(Dpes, Des - S) AN (D;, I + Des)

JR I Domain knowledge
_ Requirement
_ Specification
ZIM Design
L

Implementation

Thursday, July 05, 2012 @ 7/24

A graphical explanation of the formula

(D,S + R)A(Dpes, Des - S) A (D, I + Des)

D,
AR
SR TR

A A A A

D1.1.1 _| D1.1.1 D111
V.

D111

.
‘.
‘e

.

o,
‘e
.
.

Implementation

Requirement is represented in a goal
model, a general goal is refined into
several sub-goals. The bottom goal is
called as leaf goal or task. We
recognize the task as specification.

Design contains technical details

Thursday, July 05, 2012 @ 8/24

A preliminary ontology of software evolution according to DOLCE

Particular

Endurant [Time indexed whole) Perdurant |(Time duration whole)

Physical Non-Physical Arbitrary Event .
Endurant Endurant Sum Stative

(e.g. Present a
/ seminar) / \

Amount of Physical :
Mater Feature O)t/)ject Achievement | | Accomplishment State Process
(e.g. A person) /
Sitting

Non-artefactual Artefactual . E i i
! _ Adaptation volution Maintenance .
object | object pr:)ase event phase Running

L

° Thursday, July 05, 2012 @9/24

Concept of Software

e position:
DOLCE:Physical Object(source code in harddisk)

e research target:
Software as DOLCE: Artefactual object (source code
according to a design)

dx(Software(x) = Artefactural object(x))

° Thursday, July 05, 2012 @ 10/24

An ontology of Artefactual object

Physical
endurant
Amount of Physical
matter object
Non Artefactual
artefactual object
object
Chair i
(artefactual (an%?:;ual
role) kind)
Chair species Chair species
1 2
/
; l 1

Thursday, July 05, 2012 @ 11/24

An comparison between Oberle’s ontology and ours

Concetps according to Oberle’s ontology

« Software (“SoftwareAsCode’”):
Encoding of an algorithm specification
(e.g. C, Java, Python, pseudo code or in mind)

« ComputationalObjects:

Realization of the code in a concrete hardware, and he
positioned it in DOLCE framework as PhysicalEndurants

o ComputationalActivity
The activities presented by the running system

° Thursday, July 05, 2012 ® 12/24

An comparison between Oberle’s ontology and ours

OlO:Information
EncodingSystem

OIlO:orderedBy

OlO:InformationObject

OlO:Information
Realization

OoP:Activity

computational domain

T

Data

OlO:realizes

T 1

AbstractData ISoftwarelc)K):expresses OoP:Plan

DnS:defines

DnS:sequences

ComputationalTask

identifies

DOLCE:Particular

Thursday, July 05, 2012 @ 13/24

An comparison between Oberle’s ontology and ours

Concepts from us

Concepts from Oberle

Comparison

Specification

No species level

Design

SoftwareAsCode
(encoding of algorithm)

“SoftwareAsCode” (despite in fact) actually
more similar with “Design”, it could be pseudo
code or even algorithm in mind.

Software (copy)
developed from

ComputationalObject
(physicial existence on

We prefer to call the realization of a design as a
piece of software. It seems unintuitive we can

Implementation | hard disk or memory not call a copy of Microsoft Word, for example,
card) as a piece of software which is stored in a hard
disk.
ComputationalActivity | We believe that “Computational Activity” is a
(performance in suitable choice of this concept to represent the
running time) activities of software in running time, and we
prefer to reuse this concept in our ontology.
° Thursday, July 05, 2012 @ 14/24

Conept of Species

* A species is described as a “natural kind” according
to Manhner’s theory

* Property (something we can perceive or measure)
(e.g. shapes, colors, sizes, weights, length ...)

* Laws (something constraining the related properties)
(e.g. thermometer)

« Natural kind (a set of shared laws)

If we focus on constantly related properties, we are
able to find things possessing the same laws

° Thursday, July 05, 2012 @ 15/24

Properties and laws

Six/

(d)y

—

Fig. 1. The conceivable state space S(x) and the lawful state space S,(x) of a thing x with

two properties represented by functions p, and p,. R(p) is the range or set of values of p.

Point s represents a state of thing x. (Redrawn from Bunge, 1977; reprinted by permission
of Kluwer Academic Publishers.)

° Thursday, July 05, 2012 @ 16/24

Natural kind (species)

As shown in this figure, P is a set of all properties, P(x) represents the
properties of individual x, and P(y) represents the properties of individual y, L
represents all the laws. According to this, x and y share the set of laws
“L(x,y)”, hence x and y are in the same natural kind (species).

° Thursday, July 05, 2012 @ 17/24

Definitions of species

« Biological species
a) Itis a natural kind (rather than an arbitrary collection),
b) All of its members are organisms (present, past, or future),

c) It Y*descends” from some other natural kind (biofic or prebiotic).

« Software species

a) Itis a natural kind, an abstract class contain the laws constraining its
members;

) All of its members are copies of software;

c) The structure of all software species is like a forest but not a tree as
bio-species, to count two elements in the same species, they have to
be in the same tree.

° Thursday, July 05, 2012 @ 18/24

\

Evolution situations

Old Species

==
Old Species
\

Evolution

(b)

™y

—(New Species 2

Evolution

(a)

-

/ Old species

p—_
Old Species
\

B

—?(New Species 1

()

Evolution New Species 2

Thursday, July 05, 2012 @ 19/24

Evolution, Maintenance
and Adaptation

S Thappensat | Fommdas

Evolution Species level (D,S' - R) A (Dpps, Des’ - S") A(D;,I' + Des’)
(D',S"+R) A (D'pes, Des’" = SYAN(D';,1I' - Des')

Maintenance Individual level (D,S + R) A(Dpes, Des + S) A (D, I' + Des)
(D,S + R) A(Dpes,Des’ = S) A (D, I' + Des’)

Adaptation Individual level (D,S + R) A(Dpes, Des + S) A (D, I' + Des)
(D,S + R) A(Dpes,Des’ = S) A (D, I' + Des’)
(D,S = R) A (Dpes, Des = S) A (D;, I + Des)

° Thursday, July 05, 2012 @ 20/24

Conclusion

This paper aims at providing an ontology of
software evolution

Our work is mainly base on DOLCE framework

Our work can be served as groundwork supporting
other researches in software evolution.

Thursday, July 05, 2012 @ 21/24

Future work

Firstly, more relating concepts should be present.

Then, besides positioning the concepts into DOLCE
framework, a set of formal constraints of these
concepts should be provided.

Finally, we need to adapt our ontology into real
case studies to check its efficiency.

Thursday, July 05, 2012 ® 22/24

The end

Tlhamlks!

References

1. Swanson, E.B., The dimensions of maintenance, in Proceedings of
the 2nd international conference on Software engineering 1976, IEEE
512907mpu’rer Society Press: San Francisco, California, United States. p. 492-

2. Godfrey, M.\W. and D.M. German. The past, present, and future of
%%gév%roeogvoluﬁon. in Frontiers of Software Maintenance, 2008. FOSM

3. Vieu, L., S.Borgo, and C. Masolo, Artefacts and Roles: Modelling
Strategies in a Multiplicative Onfology, in Proceedings of the 2008
conference on Formal Ontology in Information Systems: Proceedings of
the Fifth International Conference (FOIS 2008)2008, 1OS Press. p. 121-134.

4. Masolo, C., et al., WonderWeb Deliverable D18 Onfology Library
(final), 2003.

5. Daniel Oberle, S.G., Steffen Staab, An Onfology for Software, in
Handbook on Ontologies, R.S. Steffen Staab, Editor 2009, Springer.

6. Mahner, M., What is a species¢ Journal for General Philosophy of
Science, 1993.24(1): p. 103-126.

Thursday, July 05, 2012 ®24/24

