
ADAPTATION MECHANISMS FOR
COMPLEX SOFTWARE SYSTEMS

PhD Student: Konstantinos Angelopoulos
Advisor: John Mylopoulos

Qualifying Exam Presentation 08/02/2013

!

Outline
•  Introduction
• State of the art
• Research problem
• Baseline
• Research approach
• Evaluation plan
• Conclusions

2

Motivation

q Increasing complexity

q Multiple objectives

q Requirements change

q Maintenance and administration are expensive $$$

Software systems must self-adapt in order to “survive”

3

What is an adaptive system?
Definition: An adaptive system monitors its status and operation,
performing actions to cope with changes when required

Example: Thermostat
 Reference Input = TI
 Measured Output = To
 Control Error E = TI – TO

 If E > 0 heat
 If E < 0 cool

Other examples: homeostasis, PH maintenance (biology), amplifiers
(electronics), stock market (economics)

4

Adaptive Systems in Software

5

•  Requirements are the reference input
•  Control is applied by frameworks
•  Disturbance caused by the environment’s context
•  Error when requirements are not met

State of the Art
•  Zanshin: Requirements based approach that exploits goal models

and feedback loops. Adopts principles from Control Theory to apply
adaptation [1]

•  Rainbow: Architecture based approach also based on feedback
mechanisms. Applies adaptation strategies that express
administrative processes. Uses Utility Theory to select the best
strategy [2]

•  RELAX: Language to deal with uncertainty of the adaptive systems’
environments using modal, temporal and ordinal operators [3]

•  FLAGS: Based on KAOS uses fuzzy logic to relax “crisp” goals.
Introduces the adaptive goals that involve adaptation
countermeasures. Includes operationalization for service oriented
systems [4]

•  STARMX: Specialized framework for Java based systems. Follows
the feedback loop model and applies external control using JMX
technologies [5]

6

Research Problem: Overview
Current approaches:
•  Target specific kinds of systems
•  Capture the variability either in requirements or architecture

level (adaptation is based on variability)
•  Requirements based approaches lack of technical details
•  Architecture based approaches don’t deal with changes in

requirements
•  Most of them automate human administrative procedures

(humans do mistakes) instead of applying reliable control
mechanisms

•  Those that apply control mechanisms lack precision (slow
adaptation)

•  Deal with multiple objectives in an empirical way prioritizing
them intuitively

7

Research Baseline (Zanshin)

8

•  Awareness requirements: indicators of the success failure of other
 requirements [6]
•  System Identification: define the parameters of the system (CV and VP) and the

impact over the indicators (e.g. Δ (AR3/NoS)[0,maxSrv] > 0 è serversé then
performanceé) [7]

•  Adaptation: a)Reconfiguration by changing parameter values or b) Evolution
requirements (e.g. relax constraint to 3ms) [8][9]

 Requirements – Architecture Gap

9

Q1: Who performs
 the tasks?

Q2: To whom the
parameters belong to?

Q4: In what sequence the
tasks are executed?

Q3: What do I monitor?

Q5:What is the role of the
requirements?

Q6: What if
requirements change?

architectural
model

requirements
model

ACME model

 Conflicting Multiple Objectives
Znn Case Study: An news portal
With multimedia content.

Objectives:
•  Low cost
•  High fidelity
•  High Performance

When the load is high there are 2 possible actions:
•  Add more servers
•  Switch to textual mode
When balance is achieved reverse adaptation processes take
place to reduce the operational cost and increase the fidelity.

10

Q1: Can we have them all at the same time
continuously?
Q2: What if more than one objective fails?

Precision Issues

11

Differential Equations:
•  Δ (AR1/NoS)[0,maxSrv] < 0
•  Δ (AR3/NoS)[0,maxSrv] > 0
•  Δ(AR2/VP1)[textè low è high] > 0
•  Δ (AR3/VP1)[textè low è high] < 0

 |Δ (AR3/NoS)| > |Δ (AR3/VP1)|

Q1: How many servers I have to add
to achieve the highest performance
with minimum cost?

Q2: How do I validate this?

Lack of quantitative
system identification

Research Approach: Overview
• Exploit both requirements and architectural models
• Apply optimization methods to deal with multiple

objectives
• Propose advanced system identification methods that

guarantee precision
•  Integrate all the above with Zanshin
• Experiment with various kinds of systems to evaluate

the generality and performence of our approach

12

 Bridging the Gap
•  Adaptation relies on variability
•  Apply model transformations:

•  goal models è statecharts (behavioral variability) [submitted RE’13]
•  goal models è ACME (structural variability)
 by tailoring STREAM-A approach [10] [ongoing work]

 goal model

•  Benefits:
•  A specification of all the system’s alternatives to operate
•  Deal with requirements changes
•  Deal with behavioral changes
•  System’s technical details are available

13

ACME model

flow expression

statechart

Quantitative System Identification
[ongoing work]

Proposal 1: Use machine learning techniques to derive the weight of each
parameter to the indicators (we may discover relations that we haven’t
thought before the implementation)

e.g. I1(P1, P2, P3) = w1P1 + w2P2 + w3P3

Supporting theories : Markov networks, Bayesian networks etc

Proposal 2: Given a dataset of inputs and outputs of the system perform a
regression analysis to derive the quantitative relations among the
parameters and the indicators

Supporting tools: Matlab, Mathematica etc

Warning: The system should be built and operate first!

 14

Dealing With Multiple Objectives
[ongoing work]

Proposal 1 (intuitive) : Prioritize the indicators, dealing first
with the failed indicators with higher priority and put locks
on parameters that would harm other failing objectives

Proposal 2 (conservative) : Apply multiple objective
optimization methods based on Control Theory (linear
quadratic regulator) or decision making

15

Evaluation Plan
• Embed our proposed mechanisms into Zanshin
• Experiment on various kind of systems (socio-technical,

software oriented, robotic etc) to validate the generality of
our approach

• Experiment on case studies where precision is critical to
evaluate the contribution of quantitative adaptation

• Experiment on case studies with multiple objectives to
evaluate the contribution of optimization

• Carry out comparative studies with similar approaches to
extract information about the advantages and the
disadvantages of our proposal

16

Conclusions
We propose an approach that:
•  combines both requirement and architectural models to

apply adaptation mechanisms
•  explores variability in a)requirements b)behavior and

structure revealing all the alternative ways of execution
•  increases the precision of the adaptation process
•  deals with multiple objectives
and we plan to:
•  integrate it with Zanshin
•  evaluate its generality
•  evaluate its performance on precision and optimization

problems in adaptation

17

References
[1] V. E. S. Souza, “Requirements-based Software System Adaptation,” PhD Thesis, University of
Trento, Italy, 2012.
[2] D. Garlan, S.-W. Cheng, A.-C. Huang, B. Schmerl, and P. Steenkiste, “Rainbow: Architecture-
Based Self-Adaptation with Reusable Infrastructure,” Computer, vol. 37, no. 10, pp. 46–54, 2004
[3] J. Whittle, P. Sawyer, N. Bencomo, B. Cheng, and J.-M. Bruel, “RELAX: a language to address
uncertainty in self-adaptive systems requirement,” Requirements Engineering, vol. 15, no. 2, pp. 177–
196, 2010.
[4] L. Baresi, L. Pasquale, and P. Spoletini, “Fuzzy Goals for Requirements driven Adaptation,” in Proc.
of the 18th IEEE International Requirements Engineering Conference. IEEE, 2010, pp. 125–134.
[5] R. Asadollahi, M. Salehie, and L. Tahvildari. Starmx: A framework for developing self-managing
java-based systems. Software Engineering for Adaptive and Self-Managing Systems, International
Workshop on, 0:58{67, 2009.
[6] V. E. S. Souza, A. Lapouchnian, W. N. Robinson, and J. Mylopoulos, “Awareness Requirements for
Adaptive Systems,” in Proc. of the 6th International Symposium on Software Engineering for Adaptive
and Self-Managing Systems. ACM, 2011, pp. 60–69.
[7] V. E. S. Souza, A. Lapouchnian, and J. Mylopoulos, “System Identification for Adaptive Software
Systems: a Requirements Engineering Perspective,” in Conceptual Modeling – ER 2011, ser. Lecture
Notes in Computer Science, M. Jeusfeld, L. Delcambre, and T.-W. Ling, Eds. Springer, 2011, vol.
6998, pp. 346–361.
[8] V. Souza, A. Lapouchnian, K. Angelopoulos, and J. Mylopoulos, “Requirements-driven software
evolution (online first),” Computer Science - Research and Development, pp. 1–19, 2012.

18

References
[9] V. E. S. Souza, A. Lapouchnian, and J. Mylopoulos, “Requirements driven Qualitative Adaptation,”
in Proc. of the 20th International Conference on Cooperative Information Systems (to appear).
Springer,
2012.
[10] J. a. Pimentel, M. Lucena, J. Castro, C. Silva, E. Santos, and F. Alencar, “Deriving software
architectural models from requirements models for adaptive systems: the STREAM-A approach,”
Requirements Engineering, vol. 17, no. 4, pp. 259–281, 2012.

19

20

 Deriving Architecture From Goals

21

Derivation process adopted from STREAM-A:
1.  Assign goals and tasks to actors manually instead of the guiding heuristics

in STREAM-A
2.  Decide where the monitoring points related to the awareness requirements

belong
3.  Decide where the parameters belong
4.  The actors turn to components and the interactions inferred from the goal

model refinements are turned to connectors generating the architectural
model

5.  Add a monitor component that is related to every monitoring point
6.  Add an actuator component that applies adaptation operations
7.  Attach Zanshin to the monitor and the actuator

Part of the ongoing work: Define how evolution requirements are related to the
architecture

 Deriving Architecture From Goals

22

Deriving Architecture From Goals

23

Deriving Behavior From Goals
Similar to the previous approach:
1.  Delegate tasks
2.  Define basic flow
3.  Generate base statechart
4.  Specify transitions
5.  Specify adaptive behavior
6.  Perform further refinements

24

Submitted to RE’ 13

Deriving Behavior From Goals
Step 1: We delegate the tasks that are neither performed
nor assisted by the software system under development
Step 2: We define the order of goal fulfillment and task
execution with flow expressions. Then add intermediate
states as a point where the system is waiting for some
input, e.g., waiting for a selection by the user
Note: The flow expressions describe the flow of system
behavior in terms of extended regular expressions
Example :

25

Deriving Behavior From Goals

26

Deriving Behavior From Goals
Step 3: Generate the base statechart by using the flow
expressions following specific derivation patterns:

27

Deriving Behavior From Goals
Step 4: The transitions are triggered by a) user requests
b)timers c)request by another task d) request by another
system or e) combination of the previous. Domain
assumptions, quality constraints and parameters constitute
possible pre-conditions.

28

Deriving Behavior From Goals
Step 5: We add new parameters related to the behavior of the
system
 CSC – Characterize in Sequence or Concurrently: This
parameter defines whether the Define topics, Define
participants and Defined required equipments tasks should
be performed sequentially or concurrently;
 TIR – Time Interval between Reminders: This parameter
expresses at which intervals the Remind participants task
should be triggered by the system.
 ScA – Scheduling Algorithm: There are different
algorithms to perform the scheduling, with different tradeoffs
between performance and number of conflicts.

Step 6: For our running no further refinements were necessary

29

Deriving Behavior From Goals

30

